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Decision problems in matrix semigroup

@ Let S C K9%9 be a finite set of matrices.

@ (S) is the semigroup containing all possible matrix products.

A myriad of decision problems.
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Decision problems in matrix semigroup

@ Let S C K9%9 be a finite set of matrices.

@ (S) is the semigroup containing all possible matrix products.
A myriad of decision problems.

@ Membership Problem: Given matrix M. Does M € (S) hold?
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Decision problems in matrix semigroup

@ Let S C K9%9 be a finite set of matrices.

@ (S) is the semigroup containing all possible matrix products.
A myriad of decision problems.

@ Membership Problem: Given matrix M. Does M € (S) hold?

@ Identity Problem: Let / be the identity matrix. Does | € (S)
hold?
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Decision problems in matrix semigroup

@ Let S C K9%9 be a finite set of matrices.

@ (S) is the semigroup containing all possible matrix products.
A myriad of decision problems.

@ Membership Problem: Given matrix M. Does M € (S) hold?

@ Identity Problem: Let / be the identity matrix. Does | € (S)
hold?

e Mortality Problem: Let O be the zero matrix. Does O € (S)
hold?
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Decision problems in matrix semigroup

@ Let S C K9%9 be a finite set of matrices.

@ (S) is the semigroup containing all possible matrix products.
A myriad of decision problems.

@ Membership Problem: Given matrix M. Does M € (S) hold?

@ Identity Problem: Let / be the identity matrix. Does | € (S)
hold?

e Mortality Problem: Let O be the zero matrix. Does O € (S)
hold?

@ Vector Reachability Problem: Let u, v be two vectors. Does
there exist M € (S) such that u = Mv?
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Decision problems in matrix semigroup

@ Let S C K9%9 be a finite set of matrices.

@ (S) is the semigroup containing all possible matrix products.
A myriad of decision problems.

@ Membership Problem: Given matrix M. Does M € (S) hold?

@ Identity Problem: Let / be the identity matrix. Does | € (S)
hold?

e Mortality Problem: Let O be the zero matrix. Does O € (S)
hold?

@ Vector Reachability Problem: Let u, v be two vectors. Does
there exist M € (S) such that u = Mv?

@ Freeness Problem: Is (S) free, i.e., is there a matrix M € (S)
that can be generated in two different ways?
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Restricting parameters

The general problems tend to be undecidable.
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Restricting parameters

The general problems tend to be undecidable.

Consider instead restrictions to:
e dimensions of matrices (e.g., at most 2);
@ number of generators (e.g., 2 generators);
@ number systems used (e.g., natural numbers);

@ types of matrices (e.g., upper triangular);
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Isn't this too restrictive?

Freeness Problem

Let S C K9%9 be a finite set of matrices. Is (S) free, i.e., is there
a matrix M € (S) that can be generated in two different ways?
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Isn't this too restrictive?

Freeness Problem

Let S C K9%9 be a finite set of matrices. Is (S) free, i.e., is there
a matrix M € (S) that can be generated in two different ways?

Restricted Freeness Instance

Is the semigroup generated by A= (39) and B = (32) free?

Reino Niskanen A different way of simulating Turing machines with matrices



Isn't this too restrictive?

Freeness Problem

Let S C K9%9 be a finite set of matrices. Is (S) free, i.e., is there
a matrix M € (S) that can be generated in two different ways?

Restricted Freeness Instance

Is the semigroup generated by A= (39) and B = (32) free?

Stated as an open problem in 1999.
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Isn't this too restrictive?

Freeness Problem

Let S C K9%9 be a finite set of matrices. Is (S) free, i.e., is there
a matrix M € (S) that can be generated in two different ways?

Restricted Freeness Instance

Is the semigroup generated by A= (39) and B = (32) free?

Stated as an open problem in 1999.

Two independent solutions in 2009.

Reino Niskanen A different way of simulating Turing machines with matrices



Isn't this too restrictive?

Freeness Problem

Let S C K9%9 be a finite set of matrices. Is (S) free, i.e., is there
a matrix M € (S) that can be generated in two different ways?

Restricted Freeness Instance

Stated as an open problem in 1999.
Two independent solutions in 2009.

ABOA2BA?BAIC — B2A°B2A°BABABA® B2 A BAB?

with no shorter relations.
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The landscape

K
dim.

4

Key: an undecidable problem, a decidable problem, * a restricted
variant of a problem
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The landscape
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Key: an undecidable problem, a decidable problem, * a restricted
variant of a problem
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The landscape

K

dim.

N Z Q

Membership¥,
Mortality*,

2 Freeness? | Identity,
VRP*,
Freeness*
Membership,
Mortality,
VRP,
Identity?

4 Identity

3 Freeness

Key: an undecidable problem, a decidable problem, * a restricted
variant of a problem
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Towards the undecidability

@ Turing machines have an undecidable halting
problem: (u,(q,a),v) —* (¢, (qn,x),€)?
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Towards the undecidability

@ Turing machines have an undecidable halting
problem: (u,(q,a),v) —* (¢, (qn,x),€)?

Post Correspondence Problem (

Given two morphisms g, h: A* — B*. Does there exist
a word w € A* such that g(w) = h(w)?
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Towards the undecidability

@ Turing machines have an undecidable halting
problem: (u,(q,a),v) —* (¢, (qn,x),€)?

Post Correspondence Problem (

Given two morphisms g, h: A* — B*. Does there exist
a word w € A* such that g(w) = h(w)?

A computation of a Turing-complete model can be simulated with
two morphisms.

gw) # confy # confy 3 # confpa#
h(w) — #confy # conf # conf, # #

Constructed in such way that words are equal if and only if the
machine halts.
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Application of the PCP

@ The next aim is to find an embedding
{1,2}* x {1,2}* — K9*d
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Embedding pairs of words

@ Define 0 : {1,2}* — N: For a word wyws - - - wy € {1,2}*,
O’(W1W2 <o Wk) = 3k71W1 -+ 3k72W2 + ...+ 30Wk.
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Embedding pairs of words

@ Define 0 : {1,2}* — N: For a word wyws - - - wy € {1,2}*,
o(wiws - wy) = 3K Twy + 352 + .+ 30w,

@ This is a base 3 representation of a binary word.

o Now o(uv) = 3o (u) 4 a(v), for all u,v € {1,2}*.
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Embedding pairs of words

Define o : {1,2}* — N: For a word wyws - - - wy € {1,2}",
O’(W1W2 <o Wk) = 3k71W1 -+ 3k72W2 + ...+ 30Wk.

This is a base 3 representation of a binary word.

o Now o(uv) = 3o (u) 4 a(v), for all u,v € {1,2}*.
o Define v : {1,2}* x {1,2}* — N3*3 be the mapping
3l 00
v(u,v) = 0 3Vl 0
o(u) o(v) 1
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Embedding pairs of words

Define o : {1,2}* — N: For a word wyws - - - wy € {1,2}",
O’(W1W2 <o Wk) = 3k71W1 -+ 3k72W2 + ...+ 30Wk.

This is a base 3 representation of a binary word.

o Now o(uv) = 3o (u) 4 a(v), for all u,v € {1,2}*.
o Define v : {1,2}* x {1,2}* — N3*3 be the mapping
3l 00
v(u,v) = 0 3Vl 0
o(u) o(v) 1

This is a morphism and one can define such matrix
~v(g(a), h(a)) for each letter a of the PCP instance.
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What if embedding doesn't exist?

@ In 1999, Cassaigne, Harju and Karhumaki showed that there is
no injective morphism from {a, b}* x {a, b}* into C2*2,
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What if embedding doesn't exist?

@ In 1999, Cassaigne, Harju and Karhumaki showed that there is
no injective morphism from {a, b}* x {a, b}* into C2*2,

@ Suggests decidability as virtually all undecidability results rely
on such an embedding.
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What if embedding doesn't exist?

@ In 1999, Cassaigne, Harju and Karhumaki showed that there is
no injective morphism from {a, b}* x {a, b}* into C2*2,

@ Suggests decidability as virtually all undecidability results rely
on such an embedding.

@ Does not mean that the decidability will be straightforward.
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Embedding into 3 x 3 matrices

Theorem (Ko, Niskanen, Potapov'18)

There is no embedding from {a, b}* x {a, b}* into SL(3,Z).
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Embedding into 3 x 3 matrices

Theorem (Ko, Niskanen, Potapov'18)

There is no embedding from {a, b}* x {a, b}* into SL(3,Z).

Proof idea:
e {a,b}* x {a, b}* has relations like (a,¢)(e, a) = (e, a)(a,¢)
and (a,e)(b,e) # (b,e)(a, ).
@ For a hypothetical embedding ~,
v(a,e)v(e; a) = v(e; a)v(a, €) etc.
@ Solving these equations shows that any assignment
v(a,e) = M € SL(3,Z) contradicts some relation.
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Other impossible embeddings

Ist component binary unary binary
2nd component semigroup free group | free group
0 U(n,C)
binary semigroup C?*2, SL(3,7) 722 733
unary free group 72%?
binary free group Z3%3

Reino Niskanen
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The identity problem

The identity problem

Let S C K9%9 be a finite set of matrices and let / be the identity
matrix. Does | € (S) hold?

@ Remains open for three-dimensional matrices.

@ Known to be decidable for two-dimensional matrices.
@ Known to be undecidable for four-dimensional matrices.
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The identity problem

The identity problem

Let S C K9%9 be a finite set of matrices and let / be the identity
matrix. Does | € (S) hold?

@ Remains open for three-dimensional matrices.

@ Known to be decidable for two-dimensional matrices.
@ Known to be undecidable for four-dimensional matrices.
o Uses f: FG(X2) — Z?*? as blocks in a 4-by-4 matrix.
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The identity problem

The identity problem

Let S C K9%9 be a finite set of matrices and let / be the identity
matrix. Does | € (S) hold?

@ Remains open for three-dimensional matrices.
@ Known to be decidable for two-dimensional matrices.

@ Known to be undecidable for four-dimensional matrices.
o Uses f: FG(X2) < Z?*? as blocks in a 4-by-4 matrix.

00
o Now, y(u,v) = ((féé)) &%8;) can be used to simulate a
computation of the PCP.
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o Typically building sequences of words is encoded
into the model.

@ The whole computation is stored.

@ For this addition dimensions are required.
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Simulating directly

TM: Simulation:
-[q.O
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Simulating directly

TM: Simulation:
-[Cp.E
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Simulating directly

TM: Simulation:
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Simulating directly

@ Let M bea TM.

e Map a configuration (u,(q, a), v) to a pair of words
(u(q,a), vR), where (g, a) is treated as a single letter.
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Simulating directly

@ Let M bea TM.
e Map a configuration (u,(q, a), v) to a pair of words
(u(q, a), vR), where (g, a) is treated as a single letter.
o Define y:{a1,...,am}* x {a1,...,am}* — N3*3 be the
mapping
nvl 00
v(u, vR) = 0 avlo ],
o(u) o(vf) 1

where o is a base n (n >> m) representation of a word.
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Simulating directly

@ Let M bea TM.

e Map a configuration (u,(q, a), v) to a pair of words
(u(q,a), vR), where (g, a) is treated as a single letter.

o Define y:{a1,...,am}* x {a1,...,am}* — N3*3 be the
mapping
nvl 00
y(u, vB) = 0 avlo ],

o(u) o(vf) 1
where o is a base n (n >> m) representation of a word.
@ Each letter a; is mapped to H,mzl pi, where p; are prime

i#]
numbers.
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Simulating directly

@ Let M bea TM.

e Map a configuration (u,(q, a), v) to a pair of words
(u(q,a), vR), where (g, a) is treated as a single letter.

o Define y:{a1,...,am}* x {a1,...,am}* — N3*3 be the
mapping
nvl 00
y(u, vB) = 0 avlo ],

o(u) o(vf) 1
where o is a base n (n >> m) representation of a word.

e Each letter a; is mapped to [ p;, where p; are prime
i#]
numbers.

@ For each transition of the TM define matrices that update
nl“l, nlVl, o(u) and o(vR) appropriately.
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@ A TM configuration is integral (even over naturals);
but matrices are not.
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@ A TM configuration is integral (even over naturals);
but matrices are not.

@ Multiplying by a “correct” matrix keeps the result integral;
but “incorrect” does not guarantee a non-integer matrix.
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How to deal with errors?

Allow to test for rationality.
@ Disallows applying transitions with the wrong source, [p,g],
when the configuration is when the head is moving left.

@ Allows to go to a state with an incorrect letter being read
([p.@ instead of [p,@) when the head is moving left.
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How to deal with errors?

Allow to test for rationality.
@ Disallows applying transitions with the wrong source, [p,g],
when the configuration is when the head is moving left.

@ Allows to go to a state with an incorrect letter being read
([p.@ instead of [p,@) when the head is moving left.

@ Moving over this location is no longer possible.

@ The encoding ensures that it cannot be corrected.
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Differences from the standard embedding

@ Simulation is more direct.

@ Absolute values of entries are not strictly increasing.
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Differences from the standard embedding

@ Simulation is more direct.

@ Absolute values of entries are not strictly increasing.

Theorem (Halava, Niskanen'24)

The identity problem with rational tests is undecidable for Q3*3
matrices.

Reino Niskanen A different way of simulating Turing machines with matrices



Differences from the standard embedding

@ Simulation is more direct.

@ Absolute values of entries are not strictly increasing.

Theorem (Halava, Niskanen'24)

The identity problem with rational tests is undecidable for Q3*3
matrices.

@ Sometimes a choice of embedding matters.

@ Knowing whether an embedding exists or not can be used as a
guide.

@ Question: Where else can this be applied?
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Thank you for your attention!
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