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Decision problems in matrix semigroup

Let S ⊆ Kd×d be a finite set of matrices.

⟨S⟩ is the semigroup containing all possible matrix products.

A myriad of decision problems.

Membership Problem: Given matrix M. Does M ∈ ⟨S⟩ hold?
Identity Problem: Let I be the identity matrix. Does I ∈ ⟨S⟩
hold?

Mortality Problem: Let O be the zero matrix. Does O ∈ ⟨S⟩
hold?

Vector Reachability Problem: Let u, v be two vectors. Does
there exist M ∈ ⟨S⟩ such that u = Mv?

Freeness Problem: Is ⟨S⟩ free, i.e., is there a matrix M ∈ ⟨S⟩
that can be generated in two different ways?
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Restricting parameters

The general problems tend to be undecidable.

Consider instead restrictions to:

dimensions of matrices (e.g., at most 2);

number of generators (e.g., 2 generators);

number systems used (e.g., natural numbers);

types of matrices (e.g., upper triangular);
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Isn’t this too restrictive?

Freeness Problem

Let S ⊆ Kd×d be a finite set of matrices. Is ⟨S⟩ free, i.e., is there
a matrix M ∈ ⟨S⟩ that can be generated in two different ways?

Restricted Freeness Instance

Is the semigroup generated by A = ( 2 0
0 3 ) and B = ( 3 5

0 5 ) free?

Stated as an open problem in 1999.

Two independent solutions in 2009.

AB10A2BA2BA10 = B2A6B2A2BABABA2B2A2BAB2

with no shorter relations.
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The landscape

H
HHH

HHdim.
K N Z Q

2

Freeness?

Membership*,
Mortality*,
Identity,
VRP*,
Freeness*

3

Freeness

Membership,
Mortality,
VRP,
Identity?

4

Identity

Key: an undecidable problem, a decidable problem, ∗ a restricted
variant of a problem
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Towards the undecidability

Turing machines have an undecidable halting
problem: (u, (q, a), v) →∗ (ε, (qh, ⋆), ε)?

q3

· · ·· · ·

Post Correspondence Problem (Post’46)

Given two morphisms g , h : A∗ → B∗. Does there exist
a word w ∈ A∗ such that g(w) = h(w)?

A computation of a Turing-complete model can be simulated with
two morphisms.

g(w)

h(w)
=

#conf0

#

#

conf0
conf1

#

#

conf1
conf2

#

#
· · · #

#

confhalt#

Constructed in such way that words are equal if and only if the
machine halts.
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Application of the PCP

The next aim is to find an embedding
{1, 2}∗ × {1, 2}∗ ↪→ Kd×d

Reino Niskanen A different way of simulating Turing machines with matrices 8 / 20



Embedding pairs of words

Define σ : {1, 2}∗ → N: For a word w1w2 · · ·wk ∈ {1, 2}∗,
σ(w1w2 · · ·wk) = 3k−1w1 + 3k−2w2 + . . .+ 30wk .

This is a base 3 representation of a binary word.

Now σ(uv) = 3|v |σ(u) + σ(v), for all u, v ∈ {1, 2}∗.
Define γ : {1, 2}∗ × {1, 2}∗ → N3×3 be the mapping

γ(u, v) =

 3|u| 0 0

0 3|v | 0
σ(u) σ(v) 1

 .

This is a morphism and one can define such matrix
γ(g(a), h(a)) for each letter a of the PCP instance.
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What if embedding doesn’t exist?

In 1999, Cassaigne, Harju and Karhumäki showed that there is
no injective morphism from {a, b}∗ × {a, b}∗ into C2×2.

Suggests decidability as virtually all undecidability results rely
on such an embedding.

Does not mean that the decidability will be straightforward.
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Embedding into 3× 3 matrices

Theorem (Ko, Niskanen, Potapov’18)

There is no embedding from {a, b}∗ × {a, b}∗ into SL(3,Z).

Proof idea:

{a, b}∗ × {a, b}∗ has relations like (a, ε)(ε, a) = (ε, a)(a, ε)
and (a, ε)(b, ε) ̸= (b, ε)(a, ε).

For a hypothetical embedding γ,
γ(a, ε)γ(ε, a) = γ(ε, a)γ(a, ε) etc.

Solving these equations shows that any assignment
γ(a, ε) = M ∈ SL(3,Z) contradicts some relation.
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Other impossible embeddings

XXXXXXXXXXX2nd component

1st component binary
semigroup

unary
free group

binary
free group

∅ U(n,C)
binary semigroup C2×2 , SL(3,Z) Z2×2 Z3×3

unary free group Z2×2

binary free group Z3×3
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The identity problem

The identity problem

Let S ⊆ Kd×d be a finite set of matrices and let I be the identity
matrix. Does I ∈ ⟨S⟩ hold?

Remains open for three-dimensional matrices.

Known to be decidable for two-dimensional matrices.

Known to be undecidable for four-dimensional matrices.

Uses f : FG(Σ2) ↪→ Z2×2 as blocks in a 4-by-4 matrix.

Now, γ(u, v) =

(
f (u) ( 0 0

0 0 )
( 0 0
0 0 ) f (v)

)
can be used to simulate a

computation of the PCP.
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Another way?

Typically building sequences of words is encoded
into the model.

The whole computation is stored.

For this addition dimensions are required.
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Simulating directly

TM:

q

· · ·· · ·

Simulation:

q,· · ·

· · ·
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Simulating directly
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Simulating directly

Let M be a TM.

Map a configuration (u, (q, a), v) to a pair of words
(u(q, a), vR), where (q, a) is treated as a single letter.

Define γ : {a1, . . . , am}∗ × {a1, . . . , am}∗ → N3×3 be the
mapping

γ(u, vR) =

 n|u| 0 0

0 n|v | 0
σ(u) σ(vR) 1

 ,

where σ is a base n (n ≫ m) representation of a word.

Each letter aj is mapped to
∏m

i=1
i ̸=j

pi , where pi are prime

numbers.

For each transition of the TM define matrices that update
n|u|, n|v |, σ(u) and σ(vR) appropriately.
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Observations

A TM configuration is integral (even over naturals);
but matrices are not.

Multiplying by a “correct” matrix keeps the result integral;
but “incorrect” does not guarantee a non-integer matrix.
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How to deal with errors?

Allow to test for rationality.

Disallows applying transitions with the wrong source, p, ,

when the configuration is q, when the head is moving left.

Allows to go to a state with an incorrect letter being read
( p, instead of p, ) when the head is moving left.

Moving over this location is no longer possible.

The encoding ensures that it cannot be corrected.
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Differences from the standard embedding

Simulation is more direct.

Absolute values of entries are not strictly increasing.

Theorem (Halava, Niskanen’24)

The identity problem with rational tests is undecidable for Q3×3

matrices.

Sometimes a choice of embedding matters.

Knowing whether an embedding exists or not can be used as a
guide.

Question: Where else can this be applied?
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Thank you for your attention!
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