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Switching systems

Point-to-point Given x0 and x*, is there a product (say, A0 A0 A1 A0 … A1) for 
which x*=A0 A0 A1 A0 … A1 x0? 

Boundedness Is the set of all products {A0, A1, A0A0, A0A1,…} bounded?  

Mortality Is there a product that gives the zero matrix?

or



Switching systems

Global convergence to the origin Do all products of the type 
A0 A0 A1 A0 … A1 converge to zero?

The joint spectral radius of a set of matrices     is given by 

All products of matrices in    converge to zero iff

The spectral radius of a matrix A controls the growth or decay of powers of A

The powers of A converge to zero iff 

[Rota, Strang, 1960]

or
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The CQLF method (Common Quadratic Lyapunov Function)

   

   

Switching systems stability
(a.k.a. JSR computation)

Every x in S is mapped in 
the scaled ellipsoid rS:

This is an LMI, aka Semidefinite 
Program



The CQLF method

• Theorem  For all             there exists a norm such that

[Rota Strang, 60]

•We can approximate 
the unit ball of an 
extremal norm with 
an ellipsoid



Yet another LMI method
• A strange semidefinite program

• But also…
[Goebel, Hu, Teel 06]

[Daafouz Bernussou 01]

[Lee and Dullerud 06] …

[Bliman Ferrari-Trecate 03]

i



Yet another LMI method

• An even stranger program:

[Ahmadi, J., Parrilo, 
Roozbehani10]



Yet another LMI method

• Questions:

– Can we characterize all the LMIs that work, in a unified 
framework?

– Which LMIs are better than others?

– How to prove that an LMI works (i.e. is a valid criterion)?

– Can we provide converse Lyapunov theorems for more 
methods?



From an LMI to an automaton
• Automata representation: Given a set of LMIs, construct an automaton like 

this:

• Definition:  A labeled graph (with label set A) is path-complete if for any 
word on the alphabet A, there exists a path in the graph that generates 
the corresponding word.

[Ahmadi J. Parrilo Roozbehani 14]

Theorem: If G is path-complete, the corresponding 
semidefinite program is a sufficient condition for stability.



• Examples: 

– CQLF

– Example 1

This type of graph gives a max-of-quadratics 

Lyapunov function (i.e. intersection of ellipsoids)

– Example 2

     Invariant set unclear…

Some examples



An obvious question: are there other 
valid criteria?• Theorem

 

 If G is path-complete, the corresponding semidefinite program is a 
sufficient condition for stability.

• Are all valid sets of equations coming from path-complete graphs?

• …or are there even more valid LMI criteria?

Path complete Sufficient condition
for stability

???



Are there other valid criteria?

[J. Ahmadi Parrilo Roozbehani 17] 

Path complete Sufficient condition
for stability

!!!???

 

• These results are not limited to LMIs, but apply to other families of 
Lyapunov inequalities

• Theorem: Non path-complete sets of LMIs are not sufficient conditions 
for stability



Are there other valid criteria?

 

Proof:

• Consider a given graph which is NOT path-complete

• Show that one may construct an ad-hoc set of matrices which satisfies the 
inequalities (that is, provide the solution)…

• …which however is unstable

[J. Ahmadi Parrilo Roozbehani 17] 

• Theorem: Non path-complete sets of LMIs are not sufficient conditions 
for stability
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Further results 1: constrained 
swiching systems

Often, one can make assumptions on the switching signal

e.g.: The switching signal is constrained by an automaton
          Example:
Bounded number of
  consecutive dropouts (here, 3)

Example: Wireless 
control networks

All the results generalize to the constrained case!



• Examples: 

– CQLF

– Example 1

This type of graph gives a max-of-quadratics 

Lyapunov function (i.e. intersection of ellipsoids)

– Example 2

This type of graph gives a common 

Lyapunov function for a generating 

set of words

Further results 2: equivalent common 
Lyapunov Function



Further results 2: equivalent common 
Lyapunov Function

• Examples: 

– CQLF

– Example 1

This type of graph gives a max-of-quadratics 

Lyapunov function (i.e. intersection of ellipsoids)

– Example 2

This type of graph gives a common 

Lyapunov function for a generating 

set of words



• Theorem Every path-complete criterion implies the existence of a Common 
Lyapunov function. This Lyapunov function can be expressed analytically as 
the minimum of maxima of the quadratic functions.

• Proof based on the observer automaton 

[Angeli Athanasopoulos Philippe J., 2017] 

Is a Common Lyapunov 
function for some sets Si

(cfr Cassandras-Lafortune) 

Further results 2: equivalent common 
Lyapunov Function



Further generalizations (3)

Stability Monotonicity C

Joint work with F. Forni, R. Sepulchre

Stability Controller design
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SAMSA
Series, Automata, Matrices, Symbolic dynamics, and their Applications

• Theorem  For all             there exists a norm such that

[Rota Strang, 60]

•We can approximate 
the unit ball of an 
extremal norm with 
an ellipsoid



Standing on Giants shoulders
Symbolic dynamics

Stephen Smale

1930-

Fields Medsl 1966

Wolf prize 2007

Gustav Hedlund

1904-1993

Marston Morse

1892-1977

Marston Morse et Gustav A. Hedlund (1938), « Symbolic dynamics », Amer. J. Math, vol. 60, n

o
4, 1938 



• Examples: 

– CQLF

– Example 1

This type of graph gives a max-of-quadratics 

Lyapunov function (i.e. intersection of ellipsoids)

Path-complete methods are
‘algorithmic symbolic dynamics’



• Path-complete Lyapunov Functions provide a ‘covering’ of 
the whole set of possible dynamics

– Example 1

Path-complete methods are
‘algorithmic symbolic dynamics’

Words 
ending 
with A2 
end in 
Ellipsoid 2

Words 
ending 
with A1 
end in 
Ellipsoid 1
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Conclusion: a perspective on switching systems

[Rota, Strang, 1960]

[Furstenberg Kesten, 1960]

[Blondel Tsitsiklis, 98+]

[Gurvits, 

1995]

Mathematical 

properties

TCS inspired 

Negative 

Complexity results

Lyapunov/LMI

Techniques

(S-procedure)

CPS 

applications

 Smart 

algorithms

60s 70s 90s 2000s now

[Kozyakin, 

1990]
[Daafouz

 Bernussou, 2002]

[Lee Dullerud 

2006]

[Rantzer Johansson

         1998]

[Parrilo 

Jadbabaie 2008]
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Further results and open problems

This approach naturally generalizes to other problems

 Optimize on optimization problems!

 This framework is generalizable to harder problems

• Constrained switching systems

• Path-complete monotonicity

• Automatically optimized abstractions of cyber-physical systems

• …



Constrained switching sequences

Switching sequences on regular languages

Directed & Labeled

admissible if 

a

b

c

a a

a

a

b

b

c

c

… bb …
… cc …
… aab
…

… abcabcabc …
… ac …

a

b
c

everything



Constrained switching sequences

Directed & Labeled

admissible if 

a a

a

a

b

b

c

c

Stability

Again, one can define a Constrained Joint Spectral Radius (CJSR), 

as the asymptotic worse-case rate of growth of x(t)



Application:
Systems with intermittent dropouts

Often, one can make assumptions on the switching signal

e.g.: The switching signal is constrained by an automaton
          Example:
Bounded number of
  consecutive dropouts (here, 3)

Example: Wireless 
control networks



Constrained switching and 
multinorms

• Problem: stability does not imply the existence of a 
contractive norm (no converse Lyapunov theorem)!



Constrained switching and 
multinorms

• CJSR as an infimum over sets of norms

Theorem:

[Philippe, Essick, Dullerud, J. 2016]

Corollary: PTAS



An interesting bound

a

b
c

[Legat J. Parillo, HSCC 2016] 

where r is the spectral radius of

 the adjacency matrix of the 

  automaton

Theorem: Consider the LMI bound on the cjsr



Further results and open problems

This approach naturally generalizes to other problems

 Optimize on optimization problems!

 This framework is generalizable to harder problems

• Constrained switching systems

• Path-complete monotonicity

• Automatically optimized abstractions of cyber-physical systems

• …



Path-complete monotonicity
Replace invariant compact sets by invariant cones:

Stability Monotonicity C

Joint work with F. Forni, R. Sepulchre

Definition: 



Further results and open problems

This approach naturally generalizes to other problems

 Optimize on optimization problems!

 This framework is generalizable to harder problems

• Constrained switching systems

• Path-complete monotonicity

• Automatically optimized abstractions of cyber-physical 
systems

• …



• Theorem Every path-complete criterion implies the existence of a Common 
Lyapunov function. This Lyapunov function can be expressed analytically as 
the minimum of maxima of the quadratic functions.

• Proof based on the observer automaton 

Automatically optimized abstractions 
of cyber-physical systems

[Angeli Athanasopoulos Philippe J., 2017] 

Is a Common Lyapunov 
function for some sets Si

(cfr Cassandras-Lafortune) 
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Conclusion: a perspective on switching systems
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