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Path-complete Lyapunov functions introduction

Given a discrete switched dynamical system, a Path-Complete Lyapunov Function (PCLF) is a pair (G, V)
where

- the graph G = (S, E) is Path-Complete (aka universal), and

- we assign a candidate Lyapunov function to each node of the graph, and each of them has to belong to the
template V of functions,

such that the following Lyapunov inequalities are satisfied

V(s,d,i) € B,Ya e R : Vy(/,(2)) < Vi()

|
Two parameters with which we can play

a combinatorial component /\ an algebraic component

the graph the template



Path-complete Lyapunov functions
Quadratic Lyapunov functions: the queen of stability analysis

Given a linear discrete-time switched dynamical system defined by
z(k+1) = Ay (z(k))

One can use the template of quadratic positive definite functions

inf, cp+ r

S.t.

ATPA < 2P, VAeX "
P =~ 0.




Path-complete Lyapunov functions

Copositive linear norms: another commonly used template
Given a linear positive discrete-time switched dynamical system defined by
z(k+1) = A (z(k))
where the matrices A := {A1,..., Ay} CRY; .

One can use

the template P of primal linear copositive norms induced by » € RZ , i.e.

zl|, = v'e, xeRL.

Several other templates are commonly used, such as Sum-Of-Squares, dual
linear copositive norms, or polytopic/zonotopic templates
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Path-complete Lyapunov functions exampte

Example
In the linear case, we can estimate the decay rate, defined as the infimum ¥ = 0 for which the scaled system

A, = {A1/v,Ax/v} is stable.
0 1 ] F 1]
A, =
2 1| 2 1
3 30 0 3

= v provides an index of performance of my stability criterion: the smaller it is, the best is my criterion

Ay =

1
<=
3 GO0
i ~
O 1
Template Graph 3
Quadratic (SDP) 0.913 0.913 0.910

Linear copositive (LP) 1.000 1.000 0.903
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Path-complete Lyapunov functions
Our problem today: the comparison between two graphs
Theorem

Given two path-complete graphs G, := (S1, E1) and G, := (S3, E») . The following statements are equivalent :
A. Gi simulates Gs .

B. gl S gz . [M. Philippe & R.M. Jungers, A complete characterization of the ordering of path-complete methods, 2019]

Definition: G; < Gy if for any switched system, and for any template, Graph G;
performs less well than graph G, . (that is, the upper bound is larger)

1
1
= A !
o (L X=X |, oﬁe
@) ; 1
Template Graph1 Graph 2 Graph 3
Quadratic (SDP) 0.913 0.913 0.910
Linear copositive (LP) 1.000 1.000 0.903




Path-complete Lyapunov functions comparison

Theorem

Given two path-complete graphs G, := (S1, E1) and G, := (S3, E») . The following statements are equivalent :
A. Gi simulates G .

B. gl < gZ . [M. Philippe & R.M. Jungers, A complete characterization of the ordering of path-complete methods, 2019]
Example: Rip)=a oo oo
e SPT -7 Rry=a  TTTTm--l
Az,"/ 1
> T —
1 k_@i__ (e )0
2 A\
\\\\F(s) —b
R@=b
{Va, Vo} € POLF (G, F) » W=V, W =Vo, W=V, , W=V, } € PCLF(Gy, F)
S VF = {fl, fg} - v J

Cy cy



Eureka?



Eureka?

Not quite...



Path-complete Lyapunov functions comparison

Theorem

Given two path-complete graphs G; := (S1, E1) and Gs := (S2, E2) . The following statements are equivalent :
A.G1 simulates 92 .

B.G1 <Gy .
Example: . b)?
i 1 1
e 2_\\/’“‘/ 9 I
« 9 > % 2
__/ N \u___
- 1 2
Vi |2
7 or or
{(V,,V,,Vi} € PCLF(Gy, F) ~mmmimfomimimmimi » {W,:=V,,Wy:= V,} € PCLF(G,,F)

VF = {fl';fZ} V V



Path-complete Lyapunov functions Comparlson

Consider the1lMhs dé ﬁbed ythe’t"lowmg graphs, together with the quadratlc template
can u Id a scg:t fort rlg?—graplwyy 8 qu sums of functions of the left graph
P

the left gra

has one too

has & sol tion, the rlght gra

Z

Example:

{Vp, Vi, Vi € PCLE(Gy, F) = {W. =V, +V,, W, =V, +V,} € PCLF(G,,F)

VF ={f1, f2}

VA Y% )



Path-complete Lyapunov functions comparison

Even though the right graph is not intrinsically better than the left one, it is better when the
template is closed under sum!

Example: .-~ ""777TTTTT I e

K//—_l_\\ i\/"—'l_‘\ -_\—\_-_—:::::::::::_ﬁ(f_‘)=10+q 1 R(b) = q+r
4 2
m/ 5\/‘ <y 1 Q@C/\@D )
A * 2
1 5 S ]
Forany template V closed undersum, 77

{I/P’VH."/T}EPCLF(QI:F) —> {Wa ::.V;)“‘.V;]?Wb — .V;]_l_Vr}EPCLF(gz,F)
— VF = {fi, f»} ,

Cy cv
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Template-dependent lifts Wiy = Vi
Example Wiy =V

Consider a template ) closed under min : ﬂ% Wiy = mini Ve, Vit e V
(¢, (a0,
> A € Bl o,
PFGFKGL/O(UE G = (SE)

One may assume the existence of a more sophisticated graph, taking into account the implicitely
existing functions




Template-dependent lifts Wiay = Vo

Example Woy =V
Consider a template V closed under min : Wiapy = min{V,,V,} € V
min-lift

2
D =
(

G=(S,E)




Template-dependent lifts Wiap = Va

Example Woy =V
Consider a template V closed under min : Wiapy = min{V,,V,} € V
Vo =Vo:=Vy

min-lift

G=(S,FE)
Vo(fi(z)) < Va(z) Wiay (fi(2)) < Wiy (2) Wiy (fi(z)) < Wiy (2)
Vi(fi(z)) < Va(z) Vi(fa(z)) < Va(z) Wiy (f2(2) < Wiy (2) Wias (fa(2)) < Wiay (2)
Va(f2(z)) < Va(z) Vo(fa(z)) < Vi() Wy (f2(x)) < Wiy (2) Wiagy (fi(2)) < Wiy (2)
Va(fi(z)) < V() Wiy (f1(2)) < Wiy (2) Wiag (f2(2)) < Wiy (z)
Wiapy (f1(2)) < Weapy (&) Wiagy (£2(2) < Wiapy (2)



Template-dependent lifts
Example

Consider a template V closed under min : Wiapy = min{V,,V,} € V

W} = Vd

.0 0. v (e

min-lift

(Tal2 <
G=(S,E)
Va(fi(z)) < Vi(z)
Va(fi(z)) < Va(z) JVol(f2(2)) = Va(z)
Va(fz(z)) < Va(z) Vi(f2(z)) < Vo(z)
Va(fi(z)) < Vi(z)
Wiy (fi(2)) < Wiy (2) Wiapy (f2(2)) < Wigp (2)



Template-dependent lifts
Example

Consider a template V closed under min : Wiapy = min{V,,V,} € V

Vo =Vp =V

.0 OB G T

min-lift

(Tal e <
(SE) G=(S,E)
> G=(S,F) ~ G=(5,B) - |




Template-dependent lifts min iist

We say that L : Graphsyr — Graphs)s is a valid lift with respect to a templateV if

(1) G path-complete implies L(G) is path-complete,
(2) G <y L(G), forall path-complete graph G .

> Given agraph G = (5, E) on (M), the min-liftis a graph Gmin = (Smin, Emin) defined as follows:
(1) The set of nodes Swmin is defined by
Smin == {8 CS|S #0}——— Wy :=min, ¢ V;

(1) (A, B,i) € Euin if and only if
(SC)

Va € A,3b € Bs.t. (a,b,i) € E —l

{Vi | s € 5} € PCLF(G,F) = {W, :=minV,(2) | A € Suin} € PCLF(Guin, F)
ac



Tem plate-dependent Lifts Application of the min-lift

We consider the linear positive switched system on M = 2 modes defined by

1
Ay = |7
0

We estimate the decay rate.

1
1

30

|

1
1
3

strongly connected
component of the min-lift

\

o 1 1
Template Graph 1 Graple 2 Graph 3
Quadratic (SDP) 0.913
Linear copositive (LP) 1.000 1.000 i‘; 0.903




Template-dependent lifts pefinition

We say that L : Graphsyr — Graphs)s is a valid lift with respect to a templateV if

(1) G path-complete implies L(G) is path-complete,
(2) G <y L(G), for all path-complete graph G .

—> Minlift: ¢ — L(G) := Guin
W C{Up :=min,cpV, | PC S,P # (0} CV valid for templates closed under pointwise minimum

—> Max lift : g — L(g) = gmax

W C _ valid for templates closed under pointwise maximum

——> Sum lift 1 G = L(G) := G¥ = UpenG®"
W C{Up =) ,cpVp | PCS,P#0} CV valid for templates closed under addition
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characterization theorems win ift

Theorem

Given two path-complete graphs Gy := (51, E1) and 92 := (52, E2)  The following statements are equivalent :
1) Gimin simulates 92 .
2) G1 <y Gy for any template V closed under pointwise minimum.




characterization theorems win ift

Theorem

Given two path-complete graphs G1 := (51, E1) and 92 := (52, E2)  The following statements are equivalent :
1) Gimin simulates 92 .
2) G1 <y G2 for any template V closed under pointwise minimum.

=~

In practice :

£ T Ouput
G = (S, E = (82, By) ————>
G = (51, Bn) G = (5, Br) Yes or No

Step 1
Computation of the min lift

Step 2
Check of a simulation relation

G1min = (S1mins E1min)



characterization theorems sum iift min lift, and max lift

Theorem

Given two path-complete graphs G1 := (51, E1) and 92 := (52, E2)  The following statements are equivalent :
1) Gi¥ simulates 92 .
2) G1 <y G for any template V closed under addition.

Given two path-complete graphs G1:= (51, E1) and 92 := (52, E2) , The following statements are equivalent :
1) Gimin simulates 92 .
2) G1 <y G2 for any template V closed under pointwise minimum.

Given two path-complete graphs 1 := (51, E1) and 92 := (52, E2)  The following statements are equivalent :
1) Yimax simulates 92 .
2) G1 <y G2 for any template V closed under pointwise maximum.




Presentation outline

1. Introduction

2. The comparison problem

3. Template-dependent lifts
4. characterization theorems
5. Numerical example

6. Two open problems

7. Conclusion and future work



Numerical exam ple Approximation of the JSR

Given a linear switched system with two modes

[0.9 0.3

A =
0.9 0.7

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4;, A2}, i.e. the infimum value v > 0
such that the scaled system
Ay = {A1/v, A2/}

is stable.



Numerical exam ple Approximation of the JSR

Given a linear switched system with two modes

[0.9 0.3

A =
0.9 0.7

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4, 4.} .

EO——O

G = (51, Er)




Numerical exam ple Approximation of the JSR

Given a linear switched system with two modes

[0.9 0.3

A =
0.9 0.7

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4, 4.} .

No

2 m
= O )=t
1

G = (51, E) I

No 2
simulation Gy := (Ss, Es)



Numerical exam ple Approximation of the JSR

Given a linear switched system with two modes

[0.9 0.3

A =
0.9 0.7

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4, 4.} .

W, =V,
Wy, := min{V,,,Vj, }

Min

2
(o) (o
1

G = (51, E) 1



Numerical exam ple Approximation of the JSR

Given a linear switched system with two modes

[0.9 0.3

A =
0.9 0.7

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4, 4.} .

W(lz = -[/(11
W, = min{l/;“ s Vi, }

Min

2
(o) (o
1

G = (51, E) 1



Numerical example Approximation of the JSR

Given a linear switched system with two modes

0.9 0.3
0.9 0.7

|

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4;, 4>} .

Template
5v (A) Copositive norms Quadratics
Ve(z) :=vix Vi(z) :==z' Pz

3

. Gy := (51, E1) 1.549

e a

S g

<O

© Gy := (89, Es) 1.549

o




Numerical exam ple Approximation of the JSR

Given a linear switched system with two modes

[0.9 0.3

A =
0.9 0.7

] and Ay — {0.6 0.9]

0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4, 4.} .

Vo 1= Wa, + Wh, Sum
Vi, = Wh, +W,, simulation




Numerical example Approximation of the JSR

Given a linear switched system with two modes

A — [0.9 0.3] and Ay — {0.6 0.9]
0.9 0.7 0.6 0.3

We want to approximate the joint spectral radius (JSR) of A := {4, 4.} .

Template
’Yg,v(A) Copositive norms / Quadratlcs \
Vi(z) :=viz Vi(z) =2 P

3
2_| Gi=(5.E) 1.549 1.356
E % 1y / A
g < Y m
£ ° (5.2
(4o ]
E _ /

for template V closed under sum
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Statistical com parison Some graphs seem to work better on

average, but not always
g
Soscpcpond

1

Graph G1 ‘remembers’ the last two symbols read Graph G2 remembers the last symbol if it’s a ‘1°, the last
three symbols if the last one is a 2’

What is the best strategy?
(i.e. which graph gives the best upper bound?)



Statistical com parison Some graphs seem to work better on

average, but not always
g
Soscpcpond

1

Graph G1 ‘remembers’ the last two symbols read Graph G2 remembers the last symbol if it’s
a ‘1, the last three symbols if it’s a ‘2’

8% 86%

G1 is better G2 is better



Statistical com parison Some graphs seem to work better on

G average, but not always

2 y P G1
e

1

Theorem

Given two path-complete graphs G; := (S1, E1) and G» := (Sa, E») . The following statements are equivalent :
A.G1 simulates 92 .
B.G1 <G,




Statistical com parison Some graphs seem to work better on

G average, but not always

9 9 2 Gy
0205080

1
Theorem

Given two path-complete graphs Gi1 := (S1, E1) and G2 := (S2, E2) and a particular set of matrices, if
a support set of G, is simulated in Gy, then G; < G, for this particular set of matrices

A support set of an optimization problem is a subset of constraints that defines the optimum (i.e. one can erase all the other constraints,
the objective remains the same)



Statistical com parlson Some graphs seem to work better on

Go _ - average, but got always
2
(o ,-@@ (@)
1 2 s
Support P
set _-" -
-
Theorem e _— -

Given two path-complete graphs Gi1 := (S1, E1) and G2 := (S2, E2) and a particular set of matrices, if
a support set of G, is simulated in Gy, then G; < G, for this particular set of matrices

A support set of an optimization problem is a subset of constraints that defines the optimum (i.e. one can erase all the other constraints,
the objective remains the same)



Statistical com parlson Some graphs seem to work better on

average, but got always

Theorem: Gais better than G for every system for which the support set in Gz is @
simulated by G;

But

* How ‘often’ does that happen?

* How often does a particular set appear to be a support set?
=» some support sets are more important than others!

=>» all this depends on the measure, on top of the template
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ViAW) (A" P (Ax)
~ ! ]ﬁFT/Df]’K

—_

Quadratic PCLF and composition-
closed templates

Ver)= x" G



Path-complete Lyapunov functions

Quadratic Lyapunov functions are closed under sum ...

And thus the sum-lift implies an ordering of quadratic PCLFs

But also under composition by linear operators!



Template-dependent lifts Wiay = Vo

Example Woy =V
Consider a template V closed under min : Wiapy = min{V,,V,} € V
min-lift

2
D =
(

G=(S,E)




Template-dependent lifts Wiay = Vo

Example Wiy =W
Consider a template V closed under min : Wiapy == min{V,,,} €V
(//
(()V R T Al
C——

g cl /4/ 74( 5/ (747 &(




Template-dependent lifts composition-lift

We say that L : Graphsyr — Graphs)s is a valid lift with respect to a templateV if

(1) G path-complete implies L(G) is path-complete,
(2) G <y L(G), forall path-complete graph G .

| Theorem: If the composition lift of G; simulates G, , then G, gﬁgz

But what about the converse?

* Is the composition lift infinite?

« Isitsufficient to describe the composition order?

» Isitsufficient to describe the quadratic order (together with the sum lift)?
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Conclusion: a perspective on switching systems
P # ! _ r "

[Gurvits, o
1995] [Kozyakin,
1990]

[Rantzer Johansson

Daaf
[Daafouz 1998]

Bernussou, 2002]

“ [Lee Dullerud [Parriio
2006] Jadbabaie 7R

[Rota, Strang, 196 [Blondel Tsitsiklis, 98+]

> LZ

Mathematical TGS inspired Lyapunov/LmI  CPRanmvications
properties Negative Techniuues  goritams

Complexity results (S-procedure)



Conclusion and future work

- We have provided combinatorial tools to analyze the performance of algebraic optimization
programs for control (here: stability analysis of switched systems)

- These results exploit and mix algebraic properties of the template of Lyapunov functions and
combinatorial properties of the automata

- Possibility to massively generalize these concepts to more general control problems, and more
general systems (in progress)

- Many open questions left!

Long term goal:

Develop tailored optimization programs leveraging the properties of the system, for
general control purpose



Thanks for your attention!

And thanks to my co-authors
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