Low-Dimensional VASS: Where Our Tools Fail Us

Łukasz Orlikowski

University of Warsaw

04.06.2025

Introduction

2 Techniques

- **1** Introduction
- **2** Techniques
- Itimitations

Vector Additions Systems with States

Given: A Vector Addition System with States (VASS) V, two configurations s and t.

Given: A Vector Addition System with States (VASS) V, two configurations s and t.

Question: Is there a run from s to t in V?

• Lipton '76: ExpSpace-hardness

- Lipton '76: ExpSpace-hardness
- Mayr '81: Decidability

- Lipton '76: ExpSpace-hardness
- Mayr '81: Decidability
- Kosaraju '82, Lambert '92: Simplifications

- Lipton '76: ExpSpace-hardness
- Mayr '81: Decidability
- Kosaraju '82, Lambert '92: Simplifications
- Leroux, Schmitz '19: Ackermann upper bound

- Lipton '76: ExpSpace-hardness
- Mayr '81: Decidability
- Kosaraju '82, Lambert '92: Simplifications
- Leroux, Schmitz '19: Ackermann upper bound
- Leroux and Czerwiński, O. '21: Ackermann-hardness

	UNARY	BINARY
1	NL-complete	NP-complete

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard
5	PSPACE-hard	PSPACE-hard

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard
5	PSPACE-hard	PSPACE-hard
6	PSPACE-hard	EXPSPACE-hard

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard
5	PSPACE-hard	PSPACE-hard
6	PSPACE-hard	EXPSPACE-hard
8	TOWER-hard	TOWER-hard

Low dimensional VASSs

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard
5	PSPACE-hard	PSPACE-hard
6	PSPACE-hard	EXPSPACE-hard
8	TOWER-hard	TOWER-hard

• Big gaps between lowerbounds and upperbounds

Low dimensional VASSs

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard
5	PSPACE-hard	PSPACE-hard
6	PSPACE-hard	EXPSPACE-hard
8	TOWER-hard	TOWER-hard

- Big gaps between lowerbounds and upperbounds
- Hope for elementary complexity bounds

Low dimensional VASSs

	UNARY	BINARY
1	NL-complete	NP-complete
2	NL-complete	PSPACE-complete
3	NP-hard	PSPACE-hard, in 2-EXPSPACE
4	NP-hard	PSPACE-hard
5	PSPACE-hard	PSPACE-hard
6	PSPACE-hard	EXPSPACE-hard
8	TOWER-hard	TOWER-hard

- Big gaps between lowerbounds and upperbounds
- Hope for elementary complexity bounds
- Easier to develop techniques, which can be then generalised to the general case

Challenge: Finite reachability sets of not elementary size.

Challenge: Finite reachability sets of not elementary size.

Big hopes: approximating reachability sets by semilinear sets (e.g. sandwiching technique).

Challenge: Finite reachability sets of not elementary size.

Big hopes: approximating reachability sets by semilinear sets (e.g. sandwiching technique).

Open problem 2: Improve lowerbounds!

Challenge: Finite reachability sets of not elementary size.

Big hopes: approximating reachability sets by semilinear sets (e.g. sandwiching technique).

Open problem 2: Improve lowerbounds!

Not clear how to proceed...

• Sum of all counters is bounded by B in each of the runs

- Sum of all counters is bounded by B in each of the runs
- A can decrease or increase counter by 1

- Sum of all counters is bounded by B in each of the runs
- A can decrease or increase counter by 1
- A can test counter to be zero

- Sum of all counters is bounded by B in each of the runs
- A can decrease or increase counter by 1
- A can test counter to be zero
- Each counter is nonnegative

Input: A number $n \in \mathbb{N}$ given in unary, a *B*-bounded *d*-counter automaton *A* with *s* states and states q_i, q_f

Input: A number $n \in \mathbb{N}$ given in unary, a *B*-bounded *d*-counter automaton *A* with *s* states and states q_i, q_f

Question: Does A have an accepting run from $q_i(0,0)$ to $q_f(0,0)$?

Input: A number $n \in \mathbb{N}$ given in unary, a *B*-bounded *d*-counter automaton *A* with *s* states and states q_i, q_f

Question: Does A have an accepting run from $q_i(0,0)$ to $q_f(0,0)$?

• PSPACE-hard when $B = 2^n$ and d = 2

Input: A number $n \in \mathbb{N}$ given in unary, a *B*-bounded *d*-counter automaton *A* with *s* states and states q_i, q_f

Question: Does A have an accepting run from $q_i(0,0)$ to $q_f(0,0)$?

- PSPACE-hard when $B = 2^n$ and d = 2
- EXSPACE-hard when $B = 2^{2^n}$ and d = 3

Input: A number $n \in \mathbb{N}$ given in unary, a *B*-bounded *d*-counter automaton *A* with *s* states and states q_i, q_f

Question: Does A have an accepting run from $q_i(0,0)$ to $q_f(0,0)$?

- PSPACE-hard when $B = 2^n$ and d = 2
- EXSPACE-hard when $B = 2^{2^n}$ and d = 3
- Not known when $B = 2^{2^n}$ and d = 2

Technique	$\operatorname{Pros}\checkmark$	Cons 🗡
Controlling counter	Simple, One counter	Polynomially many zero-tests

Technique	Pros 🗸	Cons 🗡
Controlling counter	Simple, One counter	Polynomially many zero-tests
Multiplication triple (B, C, BC)	Relatively easy to produce	Three counters

Technique	Pros 🗸	Cons 🗡
Controlling	Simple, One counter	Polynomially many
counter		zero-tests
Multiplication	Relatively easy to	Three counters
triple (B, C, BC)	produce	
Quadratic pair	Two counters	Harder to produce
(B, B^2)		

• x_i : the value of the counter in state c_i

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n$$

- x_i : the value of the counter in state c_i
- We know, that $x_i \ge 0$.

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n$$

- x_i : the value of the counter in state c_i
- We know, that $x_i \ge 0$.
- Hence, it is enough to check $x_1 + x_2 + \ldots x_n = 0$

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n$$

- x_i : the value of the counter in state c_i
- We know, that $x_i \ge 0$.
- Hence, it is enough to check $x_1 + x_2 + \ldots x_n = 0$
- x'_i : the effect of the run ρ_i on the counter x

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n$$

- x_i : the value of the counter in state c_i
- We know, that $x_i \ge 0$.
- Hence, it is enough to check $x_1 + x_2 + \ldots + x_n = 0$
- x'_i : the effect of the run ρ_i on the counter x
- Observe, that $x_i = x'_1 + x'_2 + \ldots + x'_i$

$$c_0 \xrightarrow{\rho_1} c_1 \xrightarrow{\rho_2} \dots \xrightarrow{\rho_{n-1}} c_{n-1} \xrightarrow{\rho_n} c_n$$

- x_i : the value of the counter in state c_i
- We know, that $x_i \ge 0$.
- Hence, it is enough to check $x_1 + x_2 + \ldots x_n = 0$
- x'_i : the effect of the run ρ_i on the counter x
- Observe, that $x_i = x'_1 + x'_2 + \ldots + x'_i$

To verify that $x_i = 0$ for all *i*, we introduce a new counter:

$$c = x_1 + x_2 + \dots + x_n = nx'_1 + \dots + x'_n.$$

• 2 or 3 counters coming from counter automata

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test
- at least one counter to produce pair or triple used for zero-testing

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test
- at least one counter to produce pair or triple used for zero-testing
- total: at least 5 counters

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test
- at least one counter to produce pair or triple used for zero-testing
- total: at least 5 counters
- Question 1: Can we do better? (for instance share counters)

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test
- at least one counter to produce pair or triple used for zero-testing
- total: at least 5 counters
- Question 1: Can we do better? (for instance share counters)
- Question 2: Can we devise a technique using fewer counters for zero-testing?

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test
- at least one counter to produce pair or triple used for zero-testing
- total: at least 5 counters
- Question 1: Can we do better? (for instance share counters)
- Question 2: Can we devise a technique using fewer counters for zero-testing?
- Question 3: Can we find a better problem to reduce from?

- 2 or 3 counters coming from counter automata
- 2 or 3 counters to simulate zero test
- at least one counter to produce pair or triple used for zero-testing
- total: at least 5 counters
- Question 1: Can we do better? (for instance share counters)
- Question 2: Can we devise a technique using fewer counters for zero-testing?
- Question 3: Can we find a better problem to reduce from?

Thank You!