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Formal Power Series
An alphabet Σ and a semiring R.

A formal power series is

f : Σ∗ → R.

Equivalently,

f =
∑
w∈Σ∗

f(w) ·w.

Definition (Rational Formal Power Series)
A series is rational if it lies in the rational
closure (closed under sum, product, and Kleene
star) of the polynomials R〈Σ〉 (finite-support
series).



Weighted automaton
A weighted automaton over R is

A =
(
Σ,Q, α ∈ RQ, (∆(a) ∈ RQ×Q)a∈Σ, η ∈ RQ).

Q: finite set of states
α: initial weight vector
∆(a): transition matrix for letter a
η: final weight vector

It recognizes the series

f(w) = αT∆(w)η,∆(w) = ∆(a1)∆(a2) · · ·∆(an),w = a1a2 · · ·an.

Definition (Recognizable Series)
A series recognized by a weighted automaton is
called recognizable.



Kleene–Schützenberger Theorem

Rational series generalize regular languages
to the weighted setting.
Kleene’s theorem: regular languages are
those recognized by finite automaton.

Theorem (Schützenberger, 1961)
A formal power series is recognizable if and
only if it is rational.



Weighted automaton Example
(Example from Balle–Mohri, Theoretical Computer
Science, Vol. 716 (2018))

q1
1 | 2

q2
3 | 1

q3
4 | 1

b | 1

b | 2

a | 3
a | 1 a | 3

b | 4

α =

1
3
4



∆(a) =

0 0 3
0 0 3
1 0 0



η =

21
1



∆(b) =

0 1 0
2 0 0
0 0 4


f(w) = αT ∆(w)η

f(ε) = 9, f(a) = 20



Rationality over Fields

Suppose R is a field.

When is a series f : Σ∗ → R rational?

Definition (Hankel Matrix of a Power Series)
The Hankel matrix Hf of f is the (bi-infinite)
matrix indexed by (u,v) ∈ Σ∗ × Σ∗, with

Hf(u,v) = f(uv).

Theorem (Fliess’ Theorem)
If R is a field, the size of the minimal
automaton recognizing f equals rank(Hf).



Fliess’ Theorem: Proof Sketch (⇒)

A = (Q,α, {∆(a)},η) recognizes f.
Define P ∈ RΣ∗×Q and S ∈ RQ×Σ∗ by

P(u,q) := q-th entry of
(
αT∆(u)

)
,

S(q,v) := q-th entry of
(
∆(v)η

)
.

Then

Hf(u,v) = f(uv) =
∑
q∈Q

P(u,q) S(q,v).

Hence

Hf = PS =⇒ rank(Hf) 6 |Q|.



Fliess’ Theorem: Proof Sketch (⇐)

Since rank(Hf) is finite, choose a set X ⊆ Σ∗

indexing a basis of rows of Hf (w.l.o.g. ε ∈ X).

Define the automaton A = (X,α, {∆(a)},η)
recognizing f by:

States: X.
Initial vector: α = e1.
Final weights: η = Hf(X, ε).

Transitions ∆(a) satisfying

Hf(Xa,Σ
∗) = ∆(a)

(
Hf(X,Σ

∗)
)
.

Proof completes by induction.



Rationality over Subsemirings

Given a weighted automaton over R
recognizing f.
A subsemiring S ⊆ R.
Assume f(Σ∗) ⊆ S.

Problem (Rationality over S)
Is f rational over S? Equivalently, does there
exist a weighted automaton over S that
recognizes f?



Focus: R = R and S = R>0

Problem (Non-negative Weights)
Given a weighted automaton over R with
f(Σ∗) ⊆ R>0, decide if f can be recognized by a
weighted automaton with non-negative weights.

Is there an analogue of Fliess’ theorem over
R>0?
How do we define rank(Hf) over R>0?

Definition (Minimum Size)
For f(Σ∗) ⊆ S rational over S, define

τS(f) := size of the smallest automaton for f.



Non-negative Rank

Definition (Non-negative Rank)
For A ∈ RΣ∗×Σ∗

>0 , the non-negative rank rank+(A)
is the smallest q ∈ N such that

A = BC, B ∈ R
Σ∗×q
>0 , C ∈ R

q×Σ∗

>0 .

rank(A) 6 rank+(A).

Lemma
For f : Σ∗ → R with f(Σ∗) ⊆ R>0,

rank+(Hf) 6 τR>0(f) = τ+(f).



Residual Non-negative Rank

Definition (Residual Non-negative Rank)
For A ∈ RΣ∗×Σ∗

>0 , the residual non-negative rank
rrank+(A) is the smallest q ∈ N such that

A = BC, B ∈ R
Σ∗×q
>0 , C ∈ R

q×Σ∗

>0 ,

where each row of C is a row of A.

rank(A) 6 rank+(A) 6 rrank+(A).

Lemma
For f : Σ∗ → R with f(Σ∗) ⊆ R>0,

τR>0(f) = τ+(f) 6 rrank+(Hf).



Fliess’ Theorem over R>0

Theorem (Fliess’ Theorem)
For f : Σ∗ → R with f(Σ∗) ⊆ R>0,

rank+(Hf) 6 τR>0(f) = τ+(f) 6 rrank+(Hf).

Define τ(f) := τR(f).

Question
If τ+(f) is finite, is there an explicit bound in
terms of τ(f) and |Σ|?



Comparing τ(f) and τ+(f)
Let Σ = {a1, . . . ,an}.
Define f by

f(aiaj) := ( i− j )2, f(w) = 0 otherwise.

q0
1 | 0

q1
0 | 0

q2
0 | 0

q3
0 | 0

q4
0 | 1

ai | 1

ai | i

ai | i2

aj | j2

aj | −2j

aj | 1

τ+(f) > rank+(Hf) = Θ(logn).



R>0-Rationality in One Variable

Theorem (Soittola, 1976)
If a rational series with non-negative
coefficients has a dominating eigenvalue, then
it is R>0-rational.

Theorem (Characterization)
A series over R>0 is R>0-rational if and only if
it is the merge of polynomials and rational
series having a dominating eigenvalue.

This characterization follows from Soittola’s
theorem and Perron–Frobenius theory.



Conjecture on R>0-Rationality

Conjecture
Let f : Σ∗ → R be rational. Then f is not
R>0-rational if and only if there exists a word
w such that the sequence n 7→ f(wn) is not
R>0-rational.

If the weighted automaton can be taken
over Q>0, then this conjecture would imply
decidability of our problem.

In parallel, search for:

A word w that falsifies R>0-rationality.
A weighted automaton over Q>0 recognizing
f.



Counterexample
Theorem
The conjecture is false.

For Σ = {a,b}, define

S(w) :=
(
|w|a − |w|b

)2
.

S is rational but not R>0-rational.
For each w,

Sw(n) = S(wn) =
(
|w|a − |w|b

)2n2
is R>0-rational.

q0
1 | 0

q1
0 | 1

q2
0 | 2

a | 1

a | 1

a | 1

a | 1

a | 1



Conclusion

Non-negative and residual ranks bound
automaton size.
Rationality in one variable is decidable
(Soittola–Perron–Frobenius).
Multivariate case over R>0: still open and
difficult.
Many open problems remain.
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