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The space AZ

We consider the set AZ of two-sided infinite sequences on a finite
alphabet A as a compact metric space. The shift transformation is the
continuous map S : AZ → AZ defined by y = S(x) if

yn = xn+1

for every n ∈ Z.
For x ∈ AZ, the language of x is the set L(x) of words which occur in
x . For X ⊂ AZ, the language of X is the set L(X ) = ∪x∈XL(x).



Shift spaces

A shift space is a subset of AZ which is

topologically closed,

invariant under the shift

For w ∈ A∗, we denote

[w ]X = {x ∈ X | x[0,|w |) = w}

the cylinder defined by the word w . For L ⊂ A∗, we denote
[L]X = ∪w∈L[w ]X .
For u, v ∈ A∗, we use

[u · v ]X = {x ∈ X | x[−[u|,|v |) = uv}

and [U · V ]X =
⋃

u∈U,v∈V [u · v ]X .



Topological dynamical systems

A shift space is a particular case of a topological dynamical system,
which is pair (X ,T ) of a compact space X and a continuous
transformation T on X .
A continuous map π : X → X ′ morphism of dynamical systems from
(X ,T ) to (X ′,T ′) if φ intertwines T and T ′, that is π ◦ T = T ′ ◦ π.
It is a factor map if π is onto. It is a conjugacy if π is one-to-one.



Substitution shifts

A substitution is a monoid morphism σ : A∗ → B∗. A substitution
σ : A∗ → A∗ is primitive if there is n ≥ 1 such that every a ∈ A appears
in every σn(b) for b ∈ B.
For σ : A∗ → A∗, the shift X(σ) is formed of the sequences x such that
all blocks of x are factors of some σn(a) for a ∈ A and n ≥ 0.

Example

The Fibonacci substitution σ : a 7→ ab, b 7→ a is primitive. The shift
X(σ) is the Fibonacci shift.

Example

The Thue-Morse substitution σ : a 7→ ab, b 7→ ba is primitive. The shift
X(σ) is the Thue-Morse shift. It contains the sequence

σω(a · a) = · · · abba · abba · · ·



Minimal and irreducible shift spaces

A shift space X is minimal if there is no nonempty shift space properly
contained in X . Equivalently, X is minimal if for every n ≥ 1, there is
N ≥ 1 such that every word u ∈ L(X ) of length n appears in every
word of L(X ) of length N.
As a weaker condition, a shift space is irreducible if, for every
u, v ∈ L(X ), there is w ∈ L(X ) such that uwv ∈ L(X ).
If σ is primitive distinct from the identity on one letter, the shift X(σ)
is minimal.

Example

The Fibonacci shift and the Thue-Morse shift are minimal shifts.



Stochastic processes

Let µ : A∗ → [0, 1] be such that µ(ε) = 1 and

µ(w) =
∑
a∈A

µ(wa)

for every w ∈ A∗. Thus, we can interpret π(wa)/π(w) as the
probability of seeing the letter a after the word w .
Such a map µ is called a stochastic process on A∗.
For L ⊂ A∗, we denote µ(L) =

∑
w∈L µ(w), which is in R ∪ {∞}.



Bernoulli processes

A simple example is a Bernoulli process, defined by a morphism
µ : A∗ → [0, 1] such that

∑
a∈A µ(a) = 1. Equivalently, µ(wa)/µ(w)

does not depend on w .
If µ is a uniform Bernoulli process, that is if µ(a) = 1/ card(A), then

µ(w) =
1

card(A)|w |



Probability measures

The family of Borel sets of a topological space is the closure under
countable unions and complement of the family of open sets.
A Borel probability measure on a topological space X is a map µ
defined on the family of Borel sets of X such that µ(X ) = 1 and

µ(∪n≥0Ui ) =
∑
n≥0

µ(Un)

for every family of paiwise disjoint Borel sets Un.
Given a stochastic process µ, there is a unique Borel probability
measure µ on AZ such that µ([w ]) = µ(w) for every w ∈ A∗.
One has µ([L]) = µ(L) provided the cylinders [w ] for w ∈ L are
disjoint, in particular when L is a prefix code, that is, no element of L is
a proper prefix of another one.



Support of a mesure

Given a Borel probability measure µ on AZ, the support of µ is the set

X = {x ∈ AZ | µ(w) > 0 for every w ∈ L(x)}.

It is a closed subset and µ(X ) = 1. Thus µ is a Borel probability
measure on X .



Invariant measures

A measure µ on AZ is invariant if µ(S−1U) = µ(U) for every Borel set
U, where S denotes the shift transformation.
The measure µ is invariant if the associated stochatic process satisfies

µ(w) =
∑
a∈A

µ(aw)

for every w ∈ A∗.
The support of an invariant measure is closed and invariant. Thus, it is
a shift space. Conversely, for every shift space X , there exists an
invariant measure supported by X .
A Bernoulli measure is invariant.



Ergodic measures

An invariant probability measure µ on AZ is ergodic if every invariant
Borel set has measure 0 or 1. As an equivalent condition, µ is ergodic
if and only if

lim
n→∞

1

n

n−1∑
i=0

µ(U ∩ S−iV ) = µ(U)µ(V )

for every pair U,V of Borel sets.
Every shift space has ergodic measures. If there is a unique invariant
measure, it is ergodic. The shift is said to be uniquely ergodic.
The support of an ergodic measure is an irreducible shift space.
A Bernoulli measure is ergodic.

Theorem (Michel)

Every primitive substitution shift is uniquely ergodic.



Mixing

An invariant probability measure on AZ is mixing if

lim
n→∞

µ(U ∩ S−nV ) = µ(U)µ(V )

Thus mixing implies ergodic. The contrary is false (think of a periodic
system with p > 1 points).



Invariant measures on substitution shifts

The matrix of a substitution σ : A∗ → B∗ is the B × A-matrix M(σ)
defined by

M(σ)b,a = |σ(a)|b.
If σ is primitive, the unique invariant measure µ on X(σ) is such that
(µ(a))a∈A is a Perron eigenvector of M(σ).
As a consequence, the Perron eigenvalue of M(σ) is the average length∑

a∈A |σ(a)|µ(a) of σ.

Example

The matrix of the Fibonacci shift σ : a 7→ ab, b 7→ a is

M(σ) =

[
1 1
1 0

]
.

The invariant measure µ on the Fibonacci shift is such that µ(a) = λ−1

and µ(b) = λ−2, where λ = (1 +
√
5)/2 is the Perron eigenvalue of M.



A useful formula (Kac’s formula)

Let σ : A∗ → A∗ be a primitive substitution such that X = X(σ) is not
periodic. Let µ be the unique invariant probability measure on X . Then

λµ(σ(X )) = 1

where λ is the average length of σ.
If, for example, σ is the Thue-Morse substitution and X = X(σ), the
invariant probability measure on X is such that

µ(σ(X )) =
1

2
.



The space of probability measures

The set M(X ) of probability measures on a shift space X is a
topological space for the weak-∗ topology making continuous the maps
µ 7→

∫
fdµ, for f ∈ C (X ,R). By the Banach-Alaoglu theorem, and

since X is compact, the space M(X ) is compact for this topology.
Let µ be an invariant measure with support X . By the ergodic
decomposition theorem, there is a measure τ on the compact space
E (X ) of ergodic measures λ on X such that

µ =

∫
E(X )

λdτ.

The relation λ ≺ µ if µ(U) = 0 implies ν(U) = 0 for every Borel set U,
defines a preorder on M(X ). The ergodic measures are the minimal
elements of this preorder.



Rational languages, automata and monoids

A finite automaton A = (Q,E , I ,T ) on the alphabet A is given by a
finite set Q of states, a finite set E ⊂ Q × A× Q of edges, a set I of
initial states and a set T of terminal states.
A path in the automaton is a sequence (pi , ai , pi+1)0≤i≤n−1 of
consecutive edges. Its label is the word a0a1 · · · an−1.
The language recognized by A is the set of labels of paths from I to T .
A language is rational if it can be recognized by a finite automaton.
As an equivalent definition, a language L ⊂ A∗ is rational if and only if
it can be recognized by a finite monoid, that is, if the exists a
morphism φ : A∗ → M onto a finite monoid M such that L = φ−1(P)
for some P ⊂ M.



Density of a language

The density of a language L ⊂ A∗ with respect to a probability measure
µ on AZ is

δµ(L) = lim
n→∞

1

n

n−1∑
i=0

µ(L ∩ Ai )

whenever the limit exists. It is in the strong sense if the limit
limn→∞ µ(L ∩ An) exists.
Our aim is to show that the density of a rational language exists for
every invariant measure µ and to give a way to compute it. The result
is known when µ is a Bernoulli measure (Berstel, 1972).



Densities with respect to Bernoulli measures

Let µ be a Bernoulli measure. The following result proves, since the
density of left or right ideals is easy to compute, the existence of
densities for rational languages with respect to µ.

Theorem (Schützenberger, 1965)

Let φ : A∗ → M be a morphism onto a finite monoid. Let J be the
minimal ideal of M. For every m ∈ M, one has

ν(m) =

{
0 if m /∈ J
ν(mM)ν(Mm)
Card(mM∩mM) otherwise.

where ν(m) = δµ(φ
−1(m)).

It also exhibits a property of equidistribution since δµ(φ
−1(m)) is

constant on each H-class of J.
For example, if M = G is a group, then ν(g) = 1/Card(G ).



Elementary properties of densities

If the density of L exists, then

0 ≤ δµ(L) ≤ 1.

The density is finitely additive, that is if L, L′ have densities and
L ∩ L′ = ∅, then L ∪ L′ has a density and

δµ(L ∪ L′) = δµ(L) + δµ(L
′).

Moreover
δµ(A

∗ \ L) = 1− δµ(L).



Reduction to ergodic measures

Proposition

If a language L has a density with respect to every ergodic measure, it
has a density with respect to every invariant measure.

Let µ be an invariant measure with support X . Assume that L has a
density with respect to every ergodic measure λ on X . Then, by the
ergodic decomposition theorem, there is a measure τ on the space
E (X ) of ergodic measures on X such that µ =

∫
E(X ) λdτ and thus

δµ(L) = lim
n→∞

1

n

n−1∑
i=0

µ(L ∩ Ai ) = lim
n→∞

1

n

n−1∑
i=0

∫
E(X )

λ(L ∩ Ai )dτ

=

∫
E(X )

lim
n→∞

1

n

n−1∑
i=0

λ(L ∩ Ai )dτ =

∫
E(X )

δλ(L)dτ.



Density of right ideals

Proposition

Let µ be an probability measure on AZ and let w ∈ A∗. Then

δµ(wA
∗) = µ(w)

in the strong sense.

Indeed, we have wA∗ ∩ An = wAn−|w | whenever n ≥ |w | and thus

lim
n→∞

µ(wA∗ ∩ An) = lim
n→∞

µ(wAn−|w |) = µ(w).

More generally, for any right ideal L ⊂ A∗, we have

δµ(L) = µ(D)

where D is the prefix code such that L = DA∗ and µ(D) =
∑

d∈D µ(d).



Density of left ideals

Proposition

If µ is invariant, then
δµ(A

∗w) = µ(w)

in the strong sense.

Indeed, we have A∗w ∩ An = An−|w |w whenever n ≥ |w | and thus

lim
n→∞

µ(A∗w ∩ An) = lim
n→∞

µ(An−|w |w) = µ(w)

since µ is invariant.
More generally, for any left ideal L, we have

δµ(L) = µ(G )

where G is the suffix code such that L = A∗G and µ(G ) =
∑

g∈G µ(g).



Quasi-ideals

Proposition

If µ is ergodic then

δµ(uA
∗ ∩ A∗v) = µ(u)µ(v).

The density exists in the strong sense if µ is mixing.

Indeed, we have for i ≥ |v |,
[uA∗ ∩ A∗v ∩ Ai ] = [u] ∩ S |v |−i [v ]

and thus

lim
n→∞

1

n

n−1∑
i=0

µ(uA∗ ∩ A∗v ∩ Ai ) = lim
n→∞

1

n

n−1∑
i=0

µ([u] ∩ S−i [v ])

= µ(u)µ(v)

The formula extends to arbitrary quasi-ideals. Let L = DA∗ ∩ A∗G with
D a prefix code and G a suffix code. Then δµ(L) = µ(D)µ(G ).



Example

Let X be the Fibonacci shift and µ its unique invariant measure. Then

δµ(aA
∗ ∩ A∗a) = µ(a)2 = λ−2.



Two-sided ideals

For every ergodic measure, the density of L = A∗wA∗ exists in the
strong sense, and is

δµ(L) =

{
1 if µ(w) > 0,

0 otherwise.

Thus, we have a 0-1 law for two-sided ideals.
Indeed, set D = L \ LA+ and G = L \ A+L. We have
L = DA∗ = A∗G = DA∗ ∩ A∗G and thus

δµ(L) = δµ(DA
∗)δµ(A

∗G ) = δµ(L)
2

whence the result since δµ(L) > 0 if and only if µ(w) > 0.
The formula extends to an arbitrary two-sided ideal L. One has
δµ(L) = 1 if µ(w) > 0 for some w ∈ L and 0 otherwise.



Part 2. Density of Group languages

A group language is of the form L = φ−1(H), where φ : A∗ → G is a
morphism onto a finite group and H ⊂ G .

Theorem (Berthé, Goulet-Ouellet, Nyberg-Brodda, P., Petersen)

Let L be a group language and µ be an invariant measure. Then δµ(L)
exists.

The proof uses four steps:

1 Use the ergodic decomposition to reduce to the case of an ergodic
measure.

2 Define the skew product G ⋊φ X , where X is the support of µ.

3 Lift the ergodic measure µ to an ergodic measure on G ⋊φ X .

4 Give a formula for δµ(φ
−1(g)) for g ∈ G .



Skew product with a group

The skew product G ⋊φ X of the group G and the shift X relative to a
morphism φ : A∗ → G , is the topological dynamical system (G × X ,T )
with

T (g , x) = (gφ(x0), Sx).

The map π : (g , x) → x is a factor map.



Lifting of ergodic measures

Proposition

For each ergodic measure µ on X , there is an ergodic measure µ̄ on
G ⋊φ X which projects on µ.

Let ζ be the product of the counting measure on G with µ. It is an
invariant measure on G ⋊φ X which projects on µ. Finally, any ergodic
measure µ̄ ≺ ζ also projects on µ.



A formula for the density

Let X be a shift space on a finite alphabet A with an ergodic measure
µ and let φ : A∗ → G be a morphism onto a finite group G . Let µ̄ be
an ergodic measure on G ⋊φ X that projects to µ. For every group
language L = φ−1(g), where g ∈ G , the density δµ(L) exists and is
given by the following formula,

δµ(L) =
∑
g∈G

µ̄(Ug ) µ̄(Uhg ). (1)

where for h ∈ G , Uh = {h} × X



We find

{h} × [L ∩ Ai ]X = ({h} × X ) ∩ T−i ({hg} × X ) = Uh ∩ T−iUhg .

Next,

µ(L ∩ Ai ) = µ̄
(
G × [L ∩ Ai ]X

)
=

∑
h∈G

µ̄({h} × [L ∩ Ai ]X )

=
∑
h∈G

µ̄(Uh ∩ T−iUhg ).

Since µ̄ is ergodic,

δµ(L) = lim
n→∞

1

n

n−1∑
i=0

µ(L ∩ Ai ) =
∑
h∈G

lim
n→∞

1

n

n−1∑
i=0

µ̄(Uh ∩ T−iUhg )

=
∑
h∈G

µ̄(Uh) µ̄(Uhg ).



Equidistibuted densities

Let φ : A∗ → G be a morphism onto a finite group G . We say then
that δµ is equidistributed on G if

δµ(φ
−1(g)) =

1

Card(G )

for every g ∈ G .

Theorem

When the product measure ν × µ, with ν the counting measure on G,
is ergodic, then δµ is equidistributed on G.

This follows from the above formula since δν×µ(Uh) = 1/Card(G ) and
thus

δµ(φ
−1(g)) =

∑
h∈G

(ν×µ)(Uh)(ν×µ)(Uhg ) =
∑
h∈G

1

Card(G )2
=

1

Card(G )
.



Three points example

The following example shows that the density is not always well
distributed when ν × µ is not ergodic.
Let X be the orbit of x = (abc)ω. Thus X = {x , y , z} with y = Sx ,
z = Sy . Let φ : A∗ → Z/2Z be defined by φ(a) = 0, φ(b) = φ(c) = 1.
Let L = φ−1(0). We have

L ∩ L(X ) = (abc)∗{ε, a} ∪ (bca)∗{ε, bc} ∪ (cab)∗{ε}.

Thus

µ(L ∩ Ai ) =

{
1 if i ≡ 0 mod 3
1
3 otherwise

This shows that

δµ(L) =
1

3
(1 +

1

3
+

1

3
) =

5

9

(and not 1/2). The measure ν × µ is not ergodic.



The skew product G ⋊φ X is formed of 6 elements with the
transformation T represented below. It has two orbits.

0, x 1, x

0, y 1, y

0, z 1, z

Figure: The skew product G × X .

We have actually ν × µ = 1
2(λ1 + λ2) where λ1, λ2 are the invariant

mesures on the two orbits of T .



Part 2. Density of rational languages

Theorem (Berthé, Goulet-Ouellet, P., ICALP 2025)

Let µ be an invariant measure on AZ. Then every rational language on
A has a density with respect to µ.

The proof is in five steps. We use a morphism φ : A∗ → M onto a
finite monoid M.

1 Use the ergodic decomposition theorem to restrict to the case
where µ is ergodic.

2 Define the X -minimal J -class JX (M), where X is the support of
µ.

3 Define a skew product (R ∪ {0})⋊φ X , where R is an R-class of
JX (M).

4 Lift µ to an ergodic measure on (R ∪ {0})⋊φ X .

5 Give a formula for δµ(φ
−1(m)), where m ∈ M.



The X -minimal J -class JX (M)

Recall the Green relations in a monoid M.

mRn ⇔ mM = nM ⇔ m, n generate the same right ideal

mLn ⇔ Mm = Mn ⇔ m, n generate the same left ideal.

mJ n ⇔ MmM = MnM ⇔ m, n generate the same ideal.

mHn ⇔ mRn and mLn.
A J -class J is regular if it contains an idempotent. We have

All H-classes contained in J have the same number of elements.

Each H-class containing an idempotent is a group and there is one
in each R-class and each L-class.
All groups in J are isomorphic to the Schützenberger group of J.

When M is a group, it is a single H-class.



The X -minimal J -class

Let φ : A∗ → M be a morphism onto a finite monoid M. Let X be an
irreducible shift space. Let KX (M) be the intersection of all ideals in M
which meet φ(L(X )). The X -minimal J -class of M is the set

JX (M) = {m ∈ KX(M) | MmM ∩ φ(L(X )) ̸= ∅}.

It is the unique 0-minimal ideal of the quotient M/I of M by the
largest ideal I having empty intersection with φ(L(X )). As such,

1 it is a regular J -class

2 its R-classes are the 0-minimal right ideals.

3 its L-classes are the 0-minimal left ideals.



Example

Consider the automaton below on the left. Let φ be the morphism
onto its transition monoid M.

12

3

4

a

b

c

c

a

b

1, 3 1, 4 1, 2

abc

bca

cab

Let X be the three-point set {x , Sx ,S2x} with x = (abc)∞. The
J -class JX (M) is represented on the right. Its group is trivial.



Example

Let A be the automaton represented below on the left. Let X be the
Fibonacci shift.

1 2

3

b

a

a

ba

1, 2 1, 3

a, a2 ab, a2b

ba, ba2 b, bab

The J -class JX (M) is represented on the right. Its group is Z/2Z.



Density of aperiodic languages

A rational language L on the alphabet A is aperiodic if it can be
recognized by an aperiodic monoid, that is, having only trivial
subgroups.

Theorem

The density of an aperiodic language with respect to an invariant
measure exists in the strong sense.

Indeed, let φ : A∗ → M be a morphism onto a finite aperiodic monoid.
Let µ be an ergodic measure with support µ. Let L = φ−1(m) for
m ∈ M. One has δµ(L) = 0 if m /∈ JX (M). Next, if m ∈ JX (M), we
have

L ∩ L(X ) = LA∗ ∩ A∗L ∩ L(X ).

therefore
δµ(L) = δµ(LA

∗)δµ(A
∗L).



Example

Let A be the aperiodic automaton below and let X be the 3-point shift
as above. Let L be stabilizer of 1. It coincides with ψ−1(0) ∩ L(X )
with ψ : A∗ → Z/2Z the morphism ψ(a) = 0 and ψ(b) = ψ(c) = 1
(merging 2, 3, 4 gives the group automaton for the parity of b, c).

12

3

4

a

b

c

c

a

b

abc

bca

cab

The density δµ(L) is the sum of the densities corresponding to the
white H-classes, that is δµ(L) = 5/9.



Example

The transition monoid of the automaton below is aperiodic. Let
X = X(σ) be the Thue-Morse shift. The X -minimal J -class
J = JX (M) is represented on the right.

3 1 2

a

bb

a

2 1 3

3

1

2

a2 a2b a2b2

ba2 ba2b ba2b2

b2a2 b2a2b b2

1/4

1/2

1/4

1/4 1/2 1/4

The density of the language L = {ab, ba}∗ is δµ(L) = 1/4. Indeed, one
has δµ(LA

∗ ∩ φ−1(J)) = δµ(A
∗L ∩ φ−1(J)) = µ(σ(X )) = 1/2 by Kac’s

formula.



Step 2:The skew product (R ∪ {0})⋊φ X

Let φ : A∗ → M be a morphism onto a finite monoid M. Let µ be an
ergodic measure with support X . Let J = JX (M) and let R be an
R-class of J.
The skew product (R ∪ {0})⋊φ X is the topological dynamical system
((R ∪ {0})× X ,T ) with the continuous transformation T defined by

T (r , x) = (r · φ(x0), Sx)

where r ·m = rm if rm ∈ R and 0 otherwise.
When M is a group G , we have R = G and (R ∪ {0})⋊ X = G ⋊φ X .



Step 3: Lifting of ergodic measures

The following generalizes the case where M is a group.

Proposition

Let φ : A∗ → M be a morphism onto a finite monoid M. Let µ be an
ergodic measure with support X ⊂ AZ and let J = JX (M). Let R be
an R-class of J. There is an ergodic measure ν on R ⋊φ X which
projects on µ and satisfies ν({0} × X ) = 0.



A formula for the density

Let φ : A∗ → M be a morphism onto a finite monoid M. Let µ be an
ergodic measure with support X . Let R be an R-class of JX (M). Let ν
be an ergodic measure on (R ∪ {0})⋊φ X that projects on µ and such
that ν({0} × X ) = 0. Let m ∈ M and L = φ−1(m). We have

δµ(L) =

{
0 if m /∈ JX (M),∑

r ,rm∈R ν(Ur ,[L])ν(Ur ,X ) otherwise

where Ur ,V = {r} × V .



We may assume that m ∈ JX (M). Let C be the prefix code such that
LA∗ = CA∗. For i ≥ 0, let

C≤i = {u ∈ C | |u| ≤ i}, C>i = {u ∈ C | |u| > i}.

We claim that for every r ∈ R such that rm ∈ R, one has

Ur ,[L∩Ai ]X = Ur ,[C≤i ]X ∩ T−i (Urm,X ).

As a result, we have

µ(L ∩ Ai ) = µ̄(R × [L ∩ Ai ]X ) =
∑

r ,rm∈R
µ̄
(
Ur ,[C≤i ]X ∩ T−i (Urm,X )

)
.

Next we claim that for ε > 0, there is i0 ≥ 0 such that
µ̄(Ur ,[C>i0

]X ) < ε for every r ∈ R.



Using the above claim together with the ergodicity of µ̄, this gives

δµ(L) = lim
n→∞

1

n

n−1∑
i=i0

µ(L ∩ Ai ) =
∑

r ,rm∈R
lim
n→∞

1

n

n−1∑
i=i0

µ̄
(
Ur ,[C≤i ]X ∩ T−i (Urm,X )

)
≥

∑
r ,rm∈R

lim
n→∞

1

n

n−1∑
i=i0

µ̄
(
Ur ,[C ]X ∩ T−i (Urm,X )

)
− ε

≥
∑

r ,rm∈R
µ̄(Ur ,[L]X )µ̄(Urm,X )− ε.

On the other hand, we have

δµ(L) =
∑

r ,rm∈R
lim
n→∞

1

n

n−1∑
i=i0

µ̄
(
Ur ,[C≤i ]X ∩ T−i (Urm,X )

)
≤

∑
r ,rm∈R

lim
n→∞

1

n

n−1∑
i=i0

µ̄
(
Ur ,[C ]X ∩ T−i (Urm,X )

)
≤

∑
r ,rm∈R

µ̄(Ur ,[L]X )µ̄(Urm,X ),

concluding the proof.



The weighted counting measure

Let φ : A∗ → M be a morphism onto a finite monoid M and let µ be
an ergodic measure with support X . Let R be an R-class of the
J -class J = JX (M). Let d be the cardinality of the H-classes in J.
The weighted counting measure is the measure ν on (R ∪ {0})× X
defined by ν({0} × X ) = 0 and for r ∈ R and w ∈ L(X ) by

ν({r}, [w ]) =
1

d
µ(Grw)

where Gr is the suffix code such that φ−1(Mr) = A∗Gr .

Proposition

The weighted counting measure is an invariant probability measure on
(R ∪ {0})⋊φ X.

When M is a group G , it is the product of the counting measure on G
with µ.



Equidistributed densities

Let φ : A∗ → M be a morphism onto a finite monoid M and let µ be
an ergodic measure with support X . We say that δµ is equidistributed
on M if for every m ∈ M, the density of L = φ−1(m) is

δµ(L) =

{
1
d δµ(LA

∗)δµ(A
∗L) if m ∈ JX (M),

0 otherwise

where d is the cadinality of H-classes of JX (M). Thus, the density is
the same within each H-class of J.



Theorem (Berthé, Goulet-Ouellet,P.)

If the weighted counting measure is ergodic, then δµ is equidistributed
on M.

Let ν be the weigthted counting measure on (R ∪ {0})⋊X . Let Dm be
the prefix code such that LA∗ = DmA

∗. The formula above reduces to

δµ(L) =
∑

r ,rm∈R
ν(Ur ,[L])ν(Urm,X )

=
1

d2

∑
r ,rm∈R

µ([Gr · Dm])µ(Grm) =
1

d2
µ(Gm)

∑
r ,rm∈R

µ([Gr · Dm])

=
1

d
µ(Gm)

∑
H⊂R

µ([GH · Dm])

where H runs over the H-classes of R and GH is the common value of
Gr for the d elements r ∈ H. We have∑

H⊂R

µ([GH · Dm]) = µ(Dm).



Therefore,

δµ(L) =
1

d
µ(Gm)µ(Dm) =

1

d
δµ(A

∗L)δµ(LA
∗),

using the formulas for the density of left and right ideals.



Example

Let A be the automaton represented below on the left. Let X be the
Fibonacci shift.

1 2

3

b

a

a

ba

1, 2 1, 3

a, a2 ab, a2b

ba, ba2 b, bab

Let L = {aa, aba, bb}∗. Then φ(L) has one element in each of the four
H-classes and δµ(L) = 1/2. This could be anticipated since L has the
same intersection with L(X ) as the group language :constituted of
words with an even number of a (merging 2 and 3 gives the group
automaton for the parity of a).



Values of the densities

Let φ : A∗ → M be a morphism onto a finite monoid M and µ be an
ergodic measure. If

(i) the weighted counting measure is ergodic,

(ii) the values of µ(L) belong, whenever finite, to an extension K of Q
for every rational language L.

Then the density of every rational language belongs to K .
This generalizes to property known for Bernoulli measures (Berstel,
1972).



Morphic shifts

A letter coding is a substitution ϕ : A∗ → B∗ such that ϕ(a) ∈ B for
every a ∈ A.
Let σ : A∗ → A∗ be a substitution and let ϕ : A∗ → B∗ be a letter
coding. The set X(σ, ϕ) = ϕ(X(σ)) is a shift space, called a morphic
shift

Example

Let σ : a 7→ ab, b 7→ ac, c 7→ db, d 7→ dc and
ϕ : a 7→ 0, b 7→ 0, c 7→ 1, d 7→ 1. The morphic shift X(σ, ϕ) is the
Rudin-Shapiro shift.



Minimal morphic shifts

Let X be a mimimal shift space on the alphabet A. A return word to
u ∈ L(X ) is a word w such that wu is in L(X ) and has exactly two
occurrences of u, one as a prefix and the other one as a suffix. Let
RX (u) denote the set of return words to u.
Let ϕu : A

∗
u → A∗ be a substitution defining a bijection from Au onto

RX (u). The set of y ∈ AZ
u such that ϕu(w) ∈ L(X ) for every block w

of y is a shift space, called the derivative of X with respect to u.

Theorem (Durand, 1998)

A minimal shift X is morphic if and only if it has a finite number of
derivatives with respect to words in L(X ).



Morphic skew products

Theorem (Berthé, Carton, Goulet-Ouellet, P.)

Let X be a minimal morphic shift and let φ : A∗ → M be a morphism
onto a finite monoid. Let R be an R-class of JX (M). Every minimal
component of (R ∪ {0}⋊φ X ) is morphic.

Since minimal morphic shifts are uniquely ergodic, this implies the
following result.

Corollary

Let X be a minimal morphic shift and let µ be its invariant probability
measure. Let φ : A∗ → M be a morphism onto a finite monoid. Then
δµ is equidistributed on M.



Open problems

1 Average length of prefix codes

2 Sofic measures

3 Idempotent measures



Average length of prefix codes

If µ is a Bernoulli measure and C is a rational prefix code such that
µ(C ) = 1, then

δµ(C
∗) =

1

λ(C )
(2)

This is a particular case of a result due to Erdös, Feller and Pollard
(1949). It follows from the fact that A∗ = C ∗P where P is the set of
proper prefixes of the words of C . Indeed, since µ(C ) = 1, we have
λ(C ) = µ(P) and therefore 1 = δµ(C

∗)µ(P) = δµ(C
∗)λ(C ).

Question: under what hypotheses does Formula (2) hold for an
arbitrary invariant measure?



Sofic measure and k-step Markov measures

A sofic measure is a measure µ on AZ such that for every w ∈ A∗

µ(w) = iφ(w)t

for some morphism φ : A∗ → Mn(R+), a row vector i ∈ Rn
+ and a

column vector t ∈ Rn
+. Thus sofic measures are such that∑

w∈A∗ µ(w)w is an R+-rational series.
A measure µ is a k-step Markov measure if one has

µ(uv) = µ(u′v)

for every words u, u′ of the same length and v of length k + 1.
A k-step Markov measure is sofic.
It has been shown that if a sofic measure on AZ given by a linear
representation of dimension n is a k-step Markov measure for some k ,
then we can bound k in terms of n and Card(A) (Boyle, Petersen,
2010).
Question: Is there a reasonable bound on k?



Idempotent measures

If ν, ν ′ are two probability measures on a finite monoid M, their
convolution product is the probability measure

ν ∗ ν ′(m) =
∑
m=uv

ν(u)ν ′(v).

A probability measure ν is idempotent if ν ∗ ν = ν.
When µ is a Bernouli measure on AZ and φ : A∗ → M is a morphism
onto a finite monoid, then ν = δµ ◦ φ−1 is an idempotent measure.
Question: Is there a definition of the convolution product such that the
above property is true for a general invariant measure µ?


