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Introduction: inductive invariants

ctgt

cinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt

... take the reachability set itself !
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Introduction: inductive invariants

▶ Typical situation:

▶ The configurations of the system are easily enumerable

⇒ simple semi-algorithm for reachability

▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.
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Definitions (VAS + semilinear sets)

▶ A Vector Addition System (VAS) is a pair (cinit,A) where cinit ∈ Nd and A ⊆ Zd is finite.

▶ It generates a transition system whose configurations are vectors in Nd and whose
transitions are of the form x → x+ a for a ∈ A.

▶ A semilinear set is a finite union of sets of the form

b+ P∗ (called linear sets)

for some b ∈ Nd (the basis) and finite P ⊆ Nd (the periods), where

P∗ := {p1 + ...+ pn | n ∈ N,p1, ...,pn ∈ P}
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A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}
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Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P)

= (P − P) ∩Q≥0P
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▶ Lin(P) is semilinear.
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