A Forward Construction of Inductive Invariants for Vector
Addition Systems

Clotilde Biziere Jérdme Leroux  Grégoire Sutre

LaBRI, Université de Bordeaux (France)

SAMSA Workshop, Warsaw, 04/06/2025



Introduction: inductive invariants



Introduction: inductive invariants

inductive invariant

» An inductive invariant is a set which

» contains the initial configuration
» s stable under transitions



Introduction: inductive invariants

inductive invariant

Cigt

» An inductive invariant is a set which

» contains the initial configuration
» s stable under transitions

» If you find an inductive invariant which doesn’t contain cig, then cig is not reachable.



Introduction: inductive invariants

inductive invariant

Cigt

» An inductive invariant is a set which

» contains the initial configuration
» s stable under transitions

» If you find an inductive invariant which doesn’t contain cig, then cig is not reachable.
» Conversely, if cig: is not reachable, then there are inductive invariants which don’t contain
Cigt



Introduction: inductive invariants

inductive invariant

Cigt

» An inductive invariant is a set which

» contains the initial configuration
» s stable under transitions

» If you find an inductive invariant which doesn’t contain cig, then cig is not reachable.

» Conversely, if cig: is not reachable, then there are inductive invariants which don’t contain
Cigt... take the reachability set itself !



Introduction: inductive invariants

inductive invariant

eachability se

» An inductive invariant is a set which

» contains the initial configuration
» s stable under transitions

» If you find an inductive invariant which doesn’t contain cig, then cig is not reachable.

» Conversely, if cig: is not reachable, then there are inductive invariants which don’t contain
Cigt... take the reachability set itself !



Introduction: inductive invariants



Introduction: inductive invariants

» Typical situation:



Introduction: inductive invariants

» Typical situation:
» The configurations of the system are easily enumerable



Introduction: inductive invariants

» Typical situation:
» The configurations of the system are easily enumerable = simple semi-algorithm for reachability



Introduction: inductive invariants

» Typical situation:

» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.



Introduction: inductive invariants

» Typical situation:

» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.

» If we can find a family F of sets such that



Introduction: inductive invariants

» Typical situation:

» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.

» If we can find a family F of sets such that
> F is recursively enumerable



Introduction: inductive invariants

» Typical situation:

» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.

» If we can find a family F of sets such that

> F is recursively enumerable
» non-reachability is certified by inductive invariants in F



Introduction: inductive invariants

» Typical situation:
» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.
» If we can find a family F of sets such that
> F is recursively enumerable
» non-reachability is certified by inductive invariants in F
» (it is decidable whether a set in F is an inductive invariant)



Introduction: inductive invariants

» Typical situation:

» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.

» If we can find a family F of sets such that

> F is recursively enumerable
» non-reachability is certified by inductive invariants in F
» (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.



Introduction: inductive invariants

» Typical situation:

» The configurations of the system are easily enumerable = simple semi-algorithm for reachability
» But the potential inductive invariants are uncountable.

» If we can find a family F of sets such that

> F is recursively enumerable
» non-reachability is certified by inductive invariants in F
» (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

» In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.
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» A Vector Addition System (VAS) is a pair (Cinit, A) where cini: € N9 and A C Z7 is finite.

> |t generates a transition system whose configurations are vectors in N? and whose
transitions are of the form x — x + a for a € A.

» A semilinear set is a finite union of sets of the form
b+ P* (called linear sets)
for some b € N9 (the basis) and finite P C N9 (the periods), where

P* = {Pl + ...+ Pn ‘ n Evalv"'vpn € P}
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