
A Forward Construction of Inductive Invariants for Vector
Addition Systems

Clotilde Bizière Jérôme Leroux Grégoire Sutre

LaBRI, Université de Bordeaux (France)

SAMSA Workshop, Warsaw, 04/06/2025



Introduction: inductive invariants

ctgt

cinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt

... take the reachability set itself !



Introduction: inductive invariants

ctgt

cinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt

... take the reachability set itself !



Introduction: inductive invariants

ctgtcinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt

... take the reachability set itself !



Introduction: inductive invariants

ctgtcinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt

... take the reachability set itself !



Introduction: inductive invariants

ctgtcinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt... take the reachability set itself !



Introduction: inductive invariants

ctgtcinit

reachability set

inductive invariant

▶ An inductive invariant is a set which
▶ contains the initial configuration
▶ is stable under transitions

▶ If you find an inductive invariant which doesn’t contain ctgt, then ctgt is not reachable.

▶ Conversely, if ctgt is not reachable, then there are inductive invariants which don’t contain
ctgt... take the reachability set itself !



Introduction: inductive invariants

▶ Typical situation:

▶ The configurations of the system are easily enumerable

⇒ simple semi-algorithm for reachability

▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:

▶ The configurations of the system are easily enumerable

⇒ simple semi-algorithm for reachability

▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable

⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability

▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that

▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that
▶ F is recursively enumerable

▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that
▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F

▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that
▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that
▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Introduction: inductive invariants

▶ Typical situation:
▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
▶ But the potential inductive invariants are uncountable.

▶ If we can find a family F of sets such that
▶ F is recursively enumerable
▶ non-reachability is certified by inductive invariants in F
▶ (it is decidable whether a set in F is an inductive invariant)

then there is an semi-algorithm for non-reachability.

▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.



Back-and-Forth Construction of Inductive Invariants

ctgtcinit
X



Back-and-Forth Construction of Inductive Invariants

ctgtcinit
X



Back-and-Forth Construction of Inductive Invariants

ctgtcinit
X



Back-and-Forth Construction of Inductive Invariants

ctgtcinit
X



Back-and-Forth Construction of Inductive Invariants

ctgtcinit
X



Back-and-Forth Construction of Inductive Invariants

ctgtcinit
X



Forward Construction

X
cinit ctgt



Forward Construction

X
cinit ctgt



Forward Construction

X
cinit ctgt



Forward Construction

X
cinit ctgt



Definitions (VAS + semilinear sets)

▶ A Vector Addition System (VAS) is a pair (cinit,A) where cinit ∈ Nd and A ⊆ Zd is finite.

▶ It generates a transition system whose configurations are vectors in Nd and whose
transitions are of the form x → x+ a for a ∈ A.

▶ A semilinear set is a finite union of sets of the form

b+ P∗ (called linear sets)

for some b ∈ Nd (the basis) and finite P ⊆ Nd (the periods), where

P∗ := {p1 + ...+ pn | n ∈ N,p1, ...,pn ∈ P}



Definitions (VAS + semilinear sets)

▶ A Vector Addition System (VAS) is a pair (cinit,A) where cinit ∈ Nd and A ⊆ Zd is finite.

▶ It generates a transition system whose configurations are vectors in Nd and whose
transitions are of the form x → x+ a for a ∈ A.

▶ A semilinear set is a finite union of sets of the form

b+ P∗ (called linear sets)

for some b ∈ Nd (the basis) and finite P ⊆ Nd (the periods), where

P∗ := {p1 + ...+ pn | n ∈ N,p1, ...,pn ∈ P}



Definitions (VAS + semilinear sets)

▶ A Vector Addition System (VAS) is a pair (cinit,A) where cinit ∈ Nd and A ⊆ Zd is finite.

▶ It generates a transition system whose configurations are vectors in Nd and whose
transitions are of the form x → x+ a for a ∈ A.

▶ A semilinear set is a finite union of sets of the form

b+ P∗ (called linear sets)

for some b ∈ Nd (the basis) and finite P ⊆ Nd (the periods), where

P∗ := {p1 + ...+ pn | n ∈ N,p1, ...,pn ∈ P}



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



Leroux’s Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set

ctgtcinit



A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}



A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}



A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}



A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}



A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}



A Well Quasi-Order on Runs

Goal: Reachability set = finite union of b+ P where b ∈ Nd and P ⊆ Nd is a periodic set
(stable by addition + contains 0).

a1 a2
end(ρ) + δblue + δred

ρ : cinit end(ρ)
a1 a2

cinit end(ρ) + δblue
a1 a2

≤ ≤ ≤

a1 a2
end(ρ) + δred

Reachability set =
⋃

minimal ρ end(ρ) + Pρ where Pρ := {end(ρ′)− end(ρ) | ρ′ ≥ ρ}



Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P)

= (P − P) ∩Q≥0P

Lin



y

x


=

y

x
∩

y

x
=

y

x

▶ Lin(P) is semilinear.

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P



Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P)

= (P − P) ∩Q≥0P

Lin



y

x


=

y

x
∩

y

x
=

y

x

▶ Lin(P) is semilinear.

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P



Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P

Lin



y

x


=

y

x
∩

y

x
=

y

x

▶ Lin(P) is semilinear.

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P



Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P

Lin



y

x


=

y

x
∩

y

x
=

y

x

▶ Lin(P) is semilinear.

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P



Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P

Lin



y

x


=

y

x
∩

y

x
=

y

x

▶ Lin(P) is semilinear.

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P



Linearizations

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P

Lin



y

x


=

y

x
∩

y

x
=

y

x

▶ Lin(P) is semilinear.

▶ Lin(P) := Gr(P) ∩ Cone(P) = (P − P) ∩Q≥0P



Our Forward Construction

Source Semilinear overapproximation of
Reach(Source)\Source

{cinit}

∪ ∪

n

{cinit} ∪

∪ ∪



Our Forward Construction

Source Semilinear overapproximation of
Reach(Source)\Source

{cinit}

∪ ∪

n

{cinit} ∪

∪ ∪



Our Forward Construction

Source Semilinear overapproximation of
Reach(Source)\Source

{cinit}

∪ ∪
n

{cinit} ∪

∪ ∪



Our Forward Construction

Source Semilinear overapproximation of
Reach(Source)\Source

{cinit}

∪ ∪
n

{cinit} ∪

∪ ∪



Our Forward Construction

Source Semilinear overapproximation of
Reach(Source)\Source

{cinit}

∪ ∪
n

{cinit} ∪

∪ ∪


