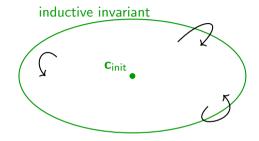
A Forward Construction of Inductive Invariants for Vector Addition Systems

Clotilde Bizière Jérôme Leroux Grégoire Sutre

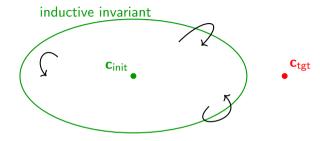
LaBRI, Université de Bordeaux (France)

SAMSA Workshop, Warsaw, 04/06/2025



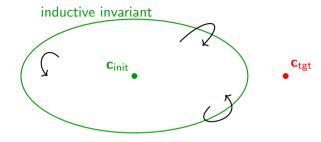
An inductive invariant is a set which

- contains the initial configuration
- is stable under transitions

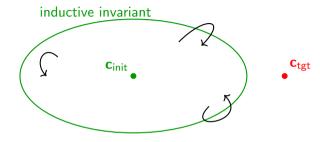


- An inductive invariant is a set which
 - contains the initial configuration
 - is stable under transitions

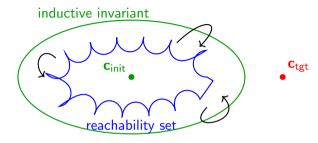
▶ If you find an inductive invariant which doesn't contain c_{tgt}, then c_{tgt} is not reachable.



- An inductive invariant is a set which
 - contains the initial configuration
 - is stable under transitions
- ▶ If you find an inductive invariant which doesn't contain c_{tgt}, then c_{tgt} is not reachable.
- Conversely, if c_{tgt} is not reachable, then there are inductive invariants which don't contain c_{tgt}



- An inductive invariant is a set which
 - contains the initial configuration
 - is stable under transitions
- If you find an inductive invariant which doesn't contain c_{tgt}, then c_{tgt} is not reachable.
- Conversely, if c_{tgt} is not reachable, then there are inductive invariants which don't contain c_{tgt}... take the reachability set itself !



- An inductive invariant is a set which
 - contains the initial configuration
 - is stable under transitions
- If you find an inductive invariant which doesn't contain c_{tgt}, then c_{tgt} is not reachable.
- Conversely, if c_{tgt} is not reachable, then there are inductive invariants which don't contain c_{tgt}... take the reachability set itself !

Typical situation:

The configurations of the system are easily enumerable

Typical situation:

• The configurations of the system are easily enumerable \Rightarrow simple semi-algorithm for reachability

- The configurations of the system are easily enumerable \Rightarrow simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.

- The configurations of the system are easily enumerable \Rightarrow simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.
- \blacktriangleright If we can find a family ${\cal F}$ of sets such that

- The configurations of the system are easily enumerable \Rightarrow simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.
- \blacktriangleright If we can find a family ${\cal F}$ of sets such that
 - \mathcal{F} is recursively enumerable

- ▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.
- \blacktriangleright If we can find a family ${\cal F}$ of sets such that
 - ► *F* is recursively enumerable
 - \blacktriangleright non-reachability is certified by inductive invariants in ${\cal F}$

- ▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.
- If we can find a family *F* of sets such that
 - *F* is recursively enumerable
 - non-reachability is certified by inductive invariants in *F*
 - (it is decidable whether a set in \mathcal{F} is an inductive invariant)

Typical situation:

- ▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.
- If we can find a family *F* of sets such that
 - *F* is recursively enumerable
 - non-reachability is certified by inductive invariants in *F*
 - (it is decidable whether a set in \mathcal{F} is an inductive invariant)

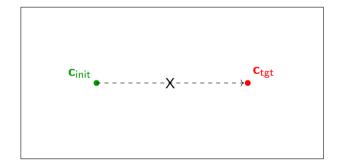
then there is an semi-algorithm for non-reachability.

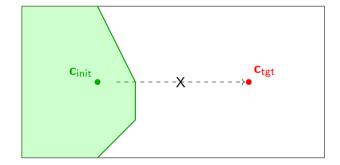
Typical situation:

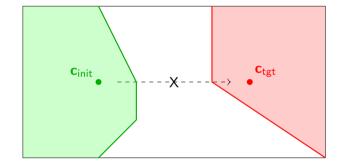
- ▶ The configurations of the system are easily enumerable ⇒ simple semi-algorithm for reachability
- But the potential inductive invariants are uncountable.
- ▶ If we can find a family *F* of sets such that
 - *F* is recursively enumerable
 - non-reachability is certified by inductive invariants in *F*
 - (it is decidable whether a set in \mathcal{F} is an inductive invariant)

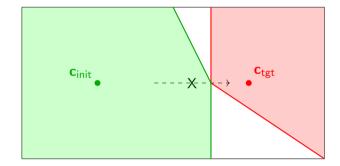
then there is an semi-algorithm for non-reachability.

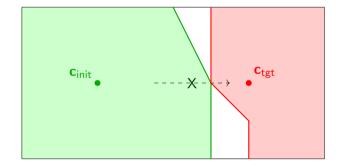
▶ In 2011, Leroux proved that VAS non-reachability is certified by semilinear sets.

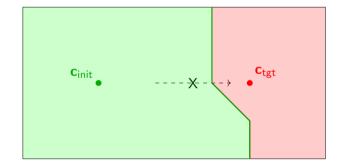


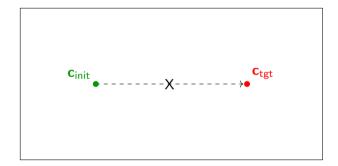


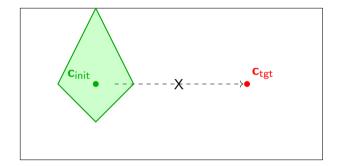


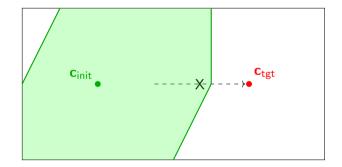


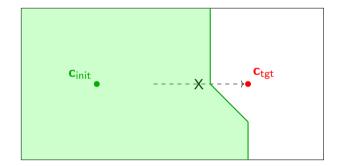












Definitions (VAS + semilinear sets)

▶ A Vector Addition System (VAS) is a pair $(\mathbf{c}_{init}, \mathbf{A})$ where $\mathbf{c}_{init} \in \mathbb{N}^d$ and $\mathbf{A} \subseteq \mathbb{Z}^d$ is finite.

Definitions (VAS + semilinear sets)

- ▶ A Vector Addition System (VAS) is a pair $(\mathbf{c}_{init}, \mathbf{A})$ where $\mathbf{c}_{init} \in \mathbb{N}^d$ and $\mathbf{A} \subseteq \mathbb{Z}^d$ is finite.
- ▶ It generates a transition system whose configurations are vectors in \mathbb{N}^d and whose transitions are of the form $\mathbf{x} \to \mathbf{x} + \mathbf{a}$ for $\mathbf{a} \in \mathbf{A}$.

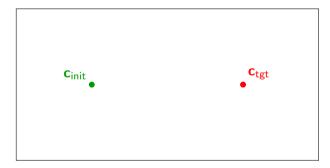
Definitions (VAS + semilinear sets)

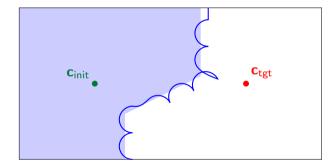
- ▶ A Vector Addition System (VAS) is a pair $(\mathbf{c}_{init}, \mathbf{A})$ where $\mathbf{c}_{init} \in \mathbb{N}^d$ and $\mathbf{A} \subseteq \mathbb{Z}^d$ is finite.
- ▶ It generates a transition system whose configurations are vectors in \mathbb{N}^d and whose transitions are of the form $\mathbf{x} \to \mathbf{x} + \mathbf{a}$ for $\mathbf{a} \in \mathbf{A}$.
- A semilinear set is a finite union of sets of the form

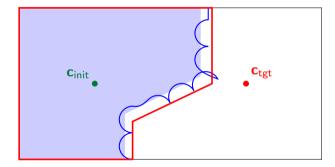
 $\mathbf{b} + \mathbf{P}^*$ (called linear sets)

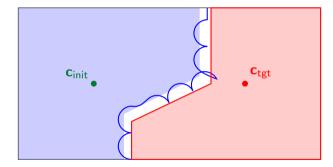
for some $\mathbf{b} \in \mathbb{N}^d$ (the basis) and finite $\mathbf{P} \subseteq \mathbb{N}^d$ (the periods), where

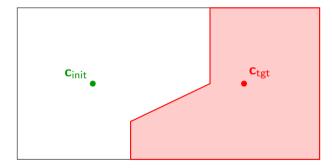
 $\mathbf{P}^* \coloneqq \{\mathbf{p_1} + ... + \mathbf{p_n} \mid n \in \mathbb{N}, \mathbf{p_1}, ..., \mathbf{p_n} \in \mathbf{P}\}$





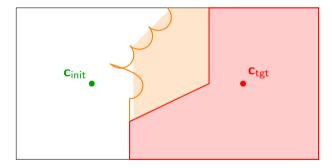






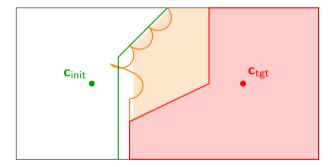
Leroux's Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set



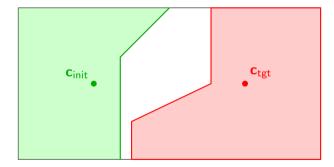
Leroux's Back-and-Forth Construction (in more detail)

Linearization: a tight over-approximation of a VAS reachability set by a semilinear set



Leroux's Back-and-Forth Construction (in more detail)

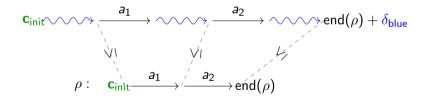
Linearization: a tight over-approximation of a VAS reachability set by a semilinear set



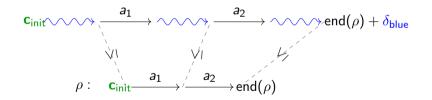
Goal: Reachability set = finite union of $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{N}^d$ and $\mathbf{P} \subseteq \mathbb{N}^d$ is a periodic set (stable by addition + contains 0).

Goal: Reachability set = finite union of $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{N}^d$ and $\mathbf{P} \subseteq \mathbb{N}^d$ is a periodic set (stable by addition + contains 0).

Goal: Reachability set = finite union of $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{N}^d$ and $\mathbf{P} \subseteq \mathbb{N}^d$ is a periodic set (stable by addition + contains 0).

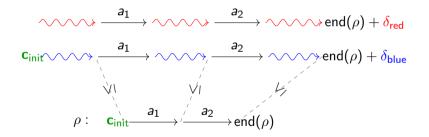


Goal: Reachability set = finite union of $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{N}^d$ and $\mathbf{P} \subseteq \mathbb{N}^d$ is a periodic set (stable by addition + contains 0).

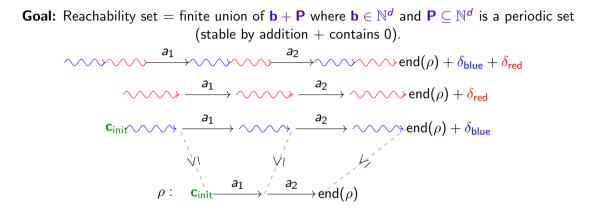


Reachability set = $\bigcup_{\text{minimal } \rho} \operatorname{end}(\rho) + \mathbf{P}_{\rho}$ where $\mathbf{P}_{\rho} \coloneqq \{\operatorname{end}(\rho') - \operatorname{end}(\rho) \mid \rho' \geq \rho\}$

Goal: Reachability set = finite union of $\mathbf{b} + \mathbf{P}$ where $\mathbf{b} \in \mathbb{N}^d$ and $\mathbf{P} \subseteq \mathbb{N}^d$ is a periodic set (stable by addition + contains 0).



Reachability set = $\bigcup_{\text{minimal } \rho} \operatorname{end}(\rho) + \mathbf{P}_{\rho}$ where $\mathbf{P}_{\rho} \coloneqq \{\operatorname{end}(\rho') - \operatorname{end}(\rho) \mid \rho' \geq \rho\}$



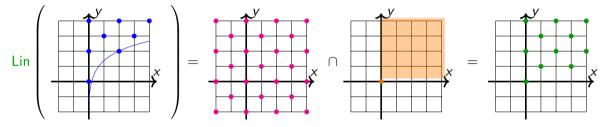
Reachability set = $\bigcup_{\text{minimal } \rho} \operatorname{end}(\rho) + \mathbf{P}_{\rho}$ where $\mathbf{P}_{\rho} \coloneqq \{\operatorname{end}(\rho') - \operatorname{end}(\rho) \mid \rho' \geq \rho\}$

• $\operatorname{Lin}(P) := \operatorname{Gr}(P) \cap \operatorname{Cone}(P)$

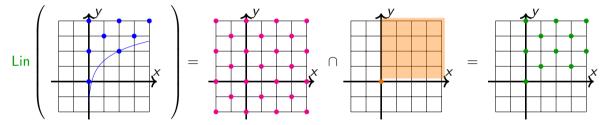
• $\operatorname{Lin}(P) := \operatorname{Gr}(P) \cap \operatorname{Cone}(P)$

• $\operatorname{Lin}(P) := \operatorname{Gr}(P) \cap \operatorname{Cone}(P) = (P - P) \cap \mathbb{Q}_{\geq 0}P$

• $\operatorname{Lin}(P) := \operatorname{Gr}(P) \cap \operatorname{Cone}(P) = (P - P) \cap \mathbb{Q}_{\geq 0}P$

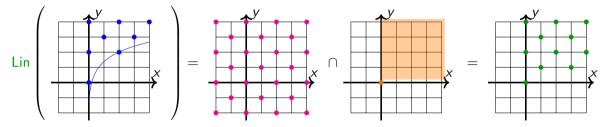


• $\operatorname{Lin}(P) := \operatorname{Gr}(P) \cap \operatorname{Cone}(P) = (P - P) \cap \mathbb{Q}_{\geq 0}P$



• Lin(P) is semilinear.

• $\operatorname{Lin}(P) := \operatorname{Gr}(P) \cap \operatorname{Cone}(P) = (P - P) \cap \mathbb{Q}_{\geq 0}P$



• Lin(P) is semilinear.

• $\overline{\text{Lin}}(P) \coloneqq \text{Gr}(P) \cap \overline{\text{Cone}}(P) = (P - P) \cap \overline{\mathbb{Q}_{\geq 0}P}$

