Combinatorial indices for matrix semigroups and finite automata

Alexander E. Guterman

Bar-Ilan University, Israel

Workshop on Series, Automata, Matrices, Symbolic dynamics, and their Applications June 2-6, Warsaw

The talk is based on a series of works with	
Yu.A. Alpin,	

A.M. Maksaev, E.R. Shafeev

Positive and Non-negative matrices

Let $A \in M_n(\mathbb{R})$ be an $n \times n$ matrix with the real entries. A is positive if all its entries are positive, $a_{ij} > 0$, A is non-negative, if all $a_{ij} \geq 0$.

Combinatorial matrix theory is an efficient approach to investigate non-negative matrices. Here

matrix properties — graph theory constructions

• Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.

- Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- u → v walk in a digraph G. The length of a walk is the number of edges in it. The notation u k v is used to indicate that there is a u → v walk of length k.

- Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- u → v walk in a digraph G. The length of a walk is the number of edges in it. The notation u ^k→ v is used to indicate that there is a u → v walk of length k.
- A closed walk is a $u \rightarrow v$ walk where u = v.

- Directed graph (or digraph) G = (V, E). Loops are permitted but multiple edges are not. Order of G is the number of vertices in it.
- u → v walk in a digraph G. The length of a walk is the number of edges in it. The notation u ^k→ v is used to indicate that there is a u → v walk of length k.
- A closed walk is a $u \to v$ walk where u = v.
- A cycle is a closed $u \to v$ walk with distinct vertices except for u = v.
- The length of a shortest cycle in G is called the girth of G.

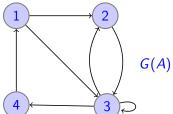
Correspondence between matrices and digraphs

Let $A = (a_{ij}) \in M_n(\mathbf{B})$. A corresponds to a digraph G = G(A) of order n as follows. The vertex set is the set $V = \{1, \ldots, n\}$. There is an edge (i,j) from i to j iff $a_{ij} \neq 0$. A is adjacency matrix of G.

Correspondence between matrices and digraphs

Let $A = (a_{ij}) \in M_n(\mathbf{B})$. A corresponds to a digraph G = G(A) of order n as follows. The vertex set is the set $V = \{1, \ldots, n\}$. There is an edge (i,j) from i to j iff $a_{ij} \neq 0$. A is adjacency matrix of G.

$$A = \left(\begin{array}{cccc} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 \end{array}\right) \quad \longleftrightarrow \quad$$



Definition

Non-negative $A \in M_n$, $A \ge 0$, $n \ge 2$, is called decomposable if \exists permutation matrix $P \in M_n$ such that

$$A = P \begin{pmatrix} B & 0 \\ C & D \end{pmatrix} P^t,$$

where B, D are square matrices and C is possibly a rectangular matrix. If A is not decomposable, then it is called indecomposable.

Definition

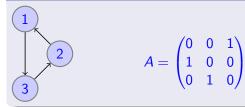
G is strongly connected iff for any $u, v \in V(G)$ there is an oriented path from u to v.

Theorem

Let $A \in M_n$, A > 0. TFAE

- A is indecomposable,
- G(A) is strongly connected,
- $(I+A)^{n-1}>0$,
- $\forall i, j, i \neq j, \exists k: (i, j)$ -th element of A^k is positive.

Example



$$(I+A)^2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

Definition

• A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.

Definition

- A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.
- If G is primitive, the exponent of G is the smallest such t.

Definition

- A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.
- If G is primitive, the exponent of G is the smallest such t.

Definition

- $A \in M_n$, $A \ge 0$, is primitive if $\exists k \in \mathbb{Z}_{>0}$: $A^k > 0$.
- If $A \in M_n$ is primitive, then the exponent of A is the smallest such k.

Definition

- A digraph G is primitive if for some positive integer t for all vertices u, v it is true that $u \xrightarrow{t} v$.
- If G is primitive, the exponent of G is the smallest such t.

Definition

- $A \in M_n$, $A \ge 0$, is primitive if $\exists k \in \mathbb{Z}_{>0}$: $A^k > 0$.
- If $A \in M_n$ is primitive, then the exponent of A is the smallest such k.

Then $A^{k+1} = A^k \cdot A > 0$.

Theorem

Let G be an digraph. THAE

- G is primitive,
- G is strongly connected and the GCD of all cycle lengths in G is 1,
- A(G) is primitive.

Corollary

Let G be a primitive digraph. Then $\exp(G) = \exp(A(G))$.

Example

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 is indecomposable and is

not primitive:
$$A^2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
, $A^3 = I$, $A^4 = A$, etc.

$$\begin{array}{c}
1 \\
2
\end{array}
A = \begin{pmatrix} 1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0 \end{pmatrix} \text{ is primitive: } A^4 = \begin{pmatrix} 1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \end{pmatrix}$$

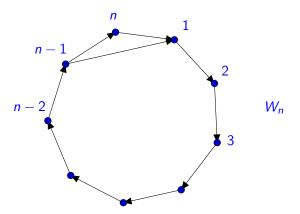
The Wielandt matrix is

$$W_n = egin{pmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \ 0 & 0 & 1 & 0 & \cdots & 0 \ 0 & 0 & 0 & 1 & \cdots & 0 \ dots & dots & dots & dots & dots \ 1 & 0 & 0 & 0 & \cdots & 1 \ 1 & 0 & 0 & 0 & \cdots & 0 \end{pmatrix}$$

Theorem (Wielandt)

Let $A \in M_n$, $A \ge 0$. Then $\exp(A) \le \exp(W_n) = (n-1)^2 + 1$.

Classical example



 W_n is called a Wielandt digraph. It is the digraph with the maximal possible exponent, $(n-1)^2 + 1$.

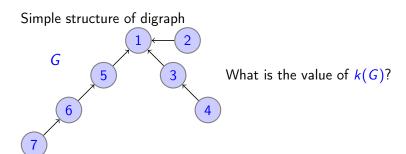
Akelbek and Kirkland, 2009

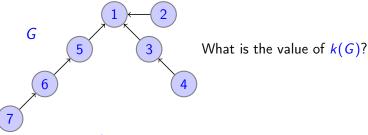
Definition

The scrambling index of a digraph G is the smallest positive integer k such that for every pair u, $v \in V(G)$, exists $w \in V(G)$ such that $u \xrightarrow{k} w$ and $v \xrightarrow{k} w$ in G.

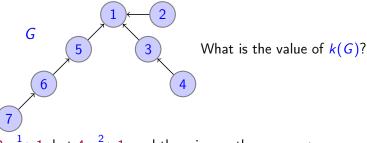
The scrambling index of G is denoted by k(G). If such w does not exist, let k(G) = 0.

$$k(W_n) = \left\lceil \frac{(n-1)^2 + 1}{2} \right\rceil < (n-1)^2 + 1 = \exp(W_n)$$



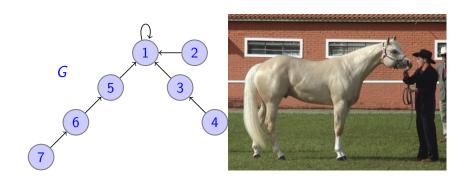


 $2 \xrightarrow{1} 1$, but $4 \xrightarrow{2} 1$, and there is no other way

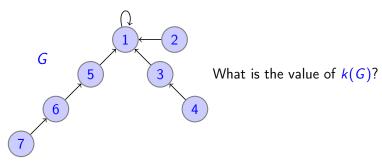


$$2 \xrightarrow{1} 1$$
, but $4 \xrightarrow{2} 1$, and there is no other way $\implies k(G) = 0$

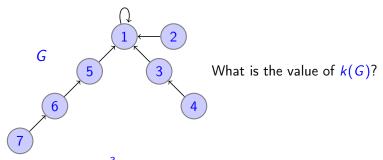
Applications



Simple structure of digraph

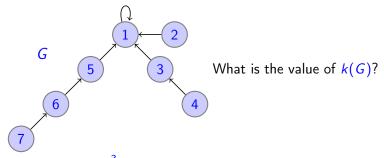


Simple structure of digraph



 $\forall a \in V(G), a \xrightarrow{3} 1$, but it is impossible to get from 7 to 1 less than by 3 steps

Simple structure of digraph



$$\forall a \in V(G), a \xrightarrow{3} 1$$
, but it is impossible to get from 7 to 1 less than by 3 steps $\Longrightarrow k(G) = 3$

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$).

Let $P=(p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P)=1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Let $P = (p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P) = 1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Coefficient of ergodicity (Dobrushin or delta coefficient):

$$\tau(P) = \frac{1}{2} \max_{i,j} \sum_{l=1}^{n} |p_{il} - p_{jl}|$$

Let $P=(p_{ij})$ be a primitive stochastic matrix (thus, $\rho(P)=1$). The goal is to get some upper bounds for the modulus of the second largest eigenvalue of P.

Coefficient of ergodicity (Dobrushin or delta coefficient):

$$\tau(P) = \frac{1}{2} \max_{i,j} \sum_{l=1}^{n} |p_{il} - p_{jl}|$$

Theorem (Akelbek, Kirkland)

Let $P=(p_{ij})$ be an $n\times n$ primitive stochastic matrix with k(P)=k and suppose that λ is a non-unit eigenvalue of P. Then $\tau(P^k)<1$ and $|\lambda|\leq (\tau(P^k))^{1/k}$.

• A memoryless communication system is represented by a digraph G, |G| = n.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t=0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \le \lambda \le n$) 'knows' 1 bit of inf. and these bits are distinct.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t=0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \le \lambda \le n$) 'knows' 1 bit of inf. and these bits are distinct.
- At time t=1 each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then $\forall v_i$ forgets the passed information and has only the received information or nothing.

- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t=0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \le \lambda \le n$) 'knows' 1 bit of inf. and these bits are distinct.
- At time t=1 each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then $\forall v_i$ forgets the passed information and has only the received information or nothing.
- The system continues in this way.

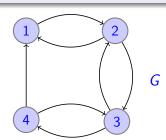
- A memoryless communication system is represented by a digraph G, |G| = n.
- Suppose that at time t=0 each of two different vertices of G (in general, 2 may be replaced with an arbitrary $\lambda \in \mathbb{Z}$, $2 \le \lambda \le n$) 'knows' 1 bit of inf. and these bits are distinct.
- At time t=1 each v_i having some information in it passes all the information bits to each of its outputs and simultaneously it may receive some information. Then $\forall v_i$ forgets the passed information and has only the received information or nothing.
- The system continues in this way.
- For some digraphs after certain time there exists a vertex that knows both bits of the information, independently on the choice of the initial two vertices. When and what digraphs?

How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of k(G)?

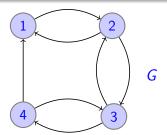


How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of k(G)?



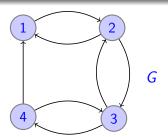
- G is strongly connected (it has a Hamilton cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$),
- G is not primitive (it has cycles of lengths only 2 and 4)

How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and $k(G) \neq 0$.

What is the value of k(G)?



- G is strongly connected (it has a Hamilton cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$),
- G is not primitive (it has cycles of lengths only 2 and 4)

$$\implies$$
 $k(G)=0.$

Scrambling index in terms of the matrix theory

Definition (Seneta)

Matrix $A \in M_n(\mathbf{B})$ is named scrambling matrix if no two rows of it are orthogonal. Equivalently, if any two rows have at least one non-zero element in coincident position.

Scrambling index in terms of the matrix theory

Definition (Seneta)

Matrix $A \in M_n(\mathbf{B})$ is named scrambling matrix if no two rows of it are orthogonal. Equivalently, if any two rows have at least one non-zero element in coincident position.

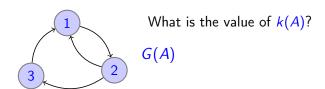
Definition (Akelbek, Kirkland)

The scrambling index of a matrix $A \in M_n(\mathbf{B})$ is the smallest positive integer k such that A^k is the scrambling matrix.

The scrambling index of A is denoted by k(A). If such k does not exist, let k(A) = 0.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then k(G) = k(A(G)).



What is the value of k(A)?

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

What is the value of
$$k(A)$$
?
$$G(A)$$

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^{2} = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^{3} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\implies k(A) = 3$$

What is the value of
$$k(A)$$
?
$$G(A)$$

 $2 \rightarrow 1 \rightarrow 2 \rightarrow 3$ and $3 \rightarrow 1 \rightarrow 2 \rightarrow 3$.

$$A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}, A^2 = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}, A^3 = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\implies k(A) = 3$$

$$u = 2, v = 3. \text{ Then } w = 3 \text{ and the shortest paths are}$$

Some known bounds for the scrambling index

Theorem (Huang, Liu)

Let G de a primitive digraph of order $n \ge 2$ with d loops. Then

$$k(G) \leq n - \left\lceil \frac{d}{2} \right\rceil.$$

Denote

$$K(n,s) = n-s+ \left\{ egin{aligned} \left(\dfrac{s-1}{2} \right) n, & \text{when } s \text{ is odd,} \\ \left(\dfrac{n-1}{2} \right) s, & \text{when } s \text{ is even.} \end{aligned}
ight.$$

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph with n vertices and girth s. Then $k(G) \leq K(n,s)$.

Some known bounds for the scrambling index

Theorem (Akelbek, Kirkland)

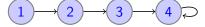
Let G be a primitive digraph of order $n \ge 3$. Then

$$k(G) \leq \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.$$

Equality holds iff $G \cong W_n$.

Actually, we do not need to require primitivity...

G:



Actually, we do not need to require primitivity...

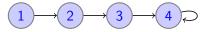
G:



• G is not primitive.

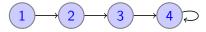
Actually, we do not need to require primitivity...

G:



- G is not primitive.
- G is not strongly connected.

G:



- G is not primitive.
- G is not strongly connected.
- $k(G) = 3 \neq 0$.

Characterization of digraphs with $k(G) \neq 0$

Theorem (GM, 2019)

For an arbitrary digraph G the following conditions are equivalent:

- ② There exists a primitive subgraph G' of G s.t. $\forall v \in V(G) \exists w \in V(G')$ for which \exists a directed walk from v to w in G.

-partition

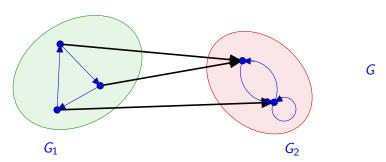
Definition

Let G be a directed graph. G has a $(G_1 \rightarrow G_2)$ -partition if G_1 and G_2 are non-empty subgraphs of the digraph G such that:

- 1. $V(G) = V(G_1) \sqcup V(G_2)$;
- 2. for each directed edge $e = (v_1, v_2) \in E(G)$, either $e \in E(G_1)$, or $e \in E(G_2)$, or $v_1 \in V(G_1), v_2 \in V(G_2)$.

Illustration

For a not strongly connected digraph G let us consider a $(G_1 \rightarrow G_2)$ -partition:



Remark

Geometrically this means that V(G) is partitioned into two non-intersecting components $V(G_1)$ and $V(G_2)$ that are connected only by edges from G_1 to G_2 .

New upper bounds

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Let s be a girth of G_2 . Then

$$k(G) \leqslant 1 + K(n-1,s).$$

Here,

$$K(n,s) = n - s + \left\{ \begin{pmatrix} \frac{s-1}{2} \end{pmatrix} n, & \text{when } s \text{ is odd,} \\ \frac{n-1}{2} \end{pmatrix} s, & \text{when } s \text{ is even.} \end{cases}$$

New upper bounds

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

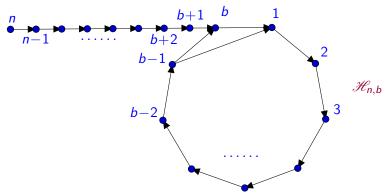
Theorem (GM, 2019)

Assume that $|G_2| = b \leq n - 1$. Then

$$k(G) \leqslant n-b+\left\lceil \frac{(b-1)^2+1}{2} \right\rceil.$$

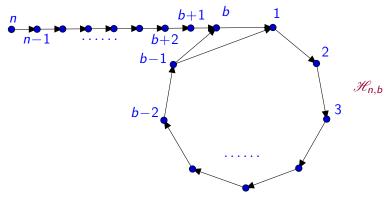
Sharpness of the upper bound

Let $n \ge 3$, $b \le n - 1$. Define a digraph $\mathcal{H}_{n,b}$:



Sharpness of the upper bound

Let $n \geq 3$, $b \leq n-1$. Define a digraph $\mathcal{H}_{n,b}$:



If
$$b > 1$$
, then $k(\mathcal{H}_{n,b}) = n - b + \left\lceil \frac{(b-1)^2 + 1}{2} \right\rceil$.

New upper bounds

Let G is not strongly connected digraph of order n with $k(G) \neq 0$ and G_1 , G_2 be its $(G_1 \rightarrow G_2)$ -partition.

Theorem (GM, 2019)

Assume that $|G_2| = b \leq n - 1$. Then

$$k(G) \leqslant n-b+\left\lceil \frac{(b-1)^2+1}{2} \right\rceil.$$

If $4 \le n < 2b$, then equality holds if and only if $G \cong \mathcal{H}_{n,b}$.

Corollaries

Theorem (GM, 2019)

Let G be an arbitrary digraph of order $n \ge 3$. Then

$$k(G) \leqslant \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.$$

The equality holds if and only if $G \cong W_n$.

Corollaries

Theorem (GM, 2019)

Let G be an arbitrary digraph of order $n \ge 3$. Then

$$k(G) \leqslant \left\lceil \frac{(n-1)^2+1}{2} \right\rceil.$$

The equality holds if and only if $G \cong W_n$.

Theorem (GM, 2019)

Let G be a not strongly connected digraph of order $n \ge 3$. Then

$$k(G) \leq 1 + \left\lceil \frac{(n-2)^2 + 1}{2} \right\rceil.$$

When $n \ge 4$, the equality holds if and only if $G \cong \mathcal{H}_{n,n-1}$.

Maps preserving scrambling index

Definition

- We say that T is a map preserving the scrambling index, if for all $A \in M_n(\mathbf{B})$ we have that k(T(A)) = k(A).
- We say that T is a map preserving the non-zero scrambling index, if for all $A \in M_n(\mathbf{B})$, for which $k(A) \neq 0$, we have that k(T(A)) = k(A).
- We say that T is a map preserving the scrambling index on the set of primitive matrices if \forall primitive $A \in M_n(\mathbf{B})$ we have that k(T(A)) = k(A).

Theorem (Frobenius, 1896)

$$T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$$
 — linear, bijective,

$$\det(T(A)) = \det A \qquad \forall A \in M_n(\mathbb{C})$$

$$\Downarrow$$

$$\exists P, Q \in GL_n(\mathbb{C}), \det(PQ) = 1:$$

$$T(A) = PAQ \quad \forall A \in M_n(\mathbb{C})$$

or

$$T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{C})$$

Definition

$$T: M_{mn}(\mathbb{F}) \to M_{mn}(\mathbb{F})$$
 is standard iff $\exists P \in GL_m(\mathbb{F}), \ Q \in GL_n(\mathbb{F})$:

$$T(A) = PAQ \quad \forall A \in M_{m,n}(\mathbb{F})$$

 $T(A) = PA^tQ \quad \forall A \in M_{m,n}(\mathbb{F})$

or
$$m = n$$
 and

or
$$m = n$$
 and

Let $X \in M_{m,n}(\mathbb{C})$. Then $C_r(X) \in M_{\binom{m}{r},\binom{n}{r}}(\mathbb{C})$ consists from r-minors of X ordered lexicographically by rows and columns.

Theorem

[Schur, 1925] Let $T: M_{mn}\mathbb{C}) \to M_{mn}(\mathbb{C})$ be bijective and linear, $r, 2 \le r \le \min\{m, n\}$, be given. \exists bijective linear $S: M_{\binom{m}{r}, \binom{n}{r}}(\mathbb{C}) \to M_{\binom{m}{r}, \binom{n}{r}}(\mathbb{C})$ s.t.

$$C_r(T(X)) = S(C_r(X)) \ \forall \in M_{m,n}(\mathbb{C})$$

iff T is standard.

Theorem (Dieudonné, 1949)

 $\Omega_n(\mathbb{F})$ is the set of singular matrices

$$T: M_n(\mathbb{F}) \to M_n(\mathbb{F})$$
 — linear, bijective, $T(\Omega_n(\mathbb{F})) \subseteq \Omega_n(\mathbb{F})$

$$\Downarrow$$

$$\exists P, Q \in \mathit{GL}_n(\mathbb{F})$$

$$T(A) = PAQ \quad \forall A \in M_n(\mathbb{F})$$

or

$$T(A) = PA^tQ \quad \forall A \in M_n(\mathbb{F})$$

E.B. Dynkin, Maximal subgroups of classical groups // The Proceedings of the Moscow Mathematical Society, 1 (1952) 39-166.

$$St_n(\mathbb{F}) \subseteq Fix(S) \subseteq GL_{n^2}(\mathbb{F})$$

The quantity of Linear Preservers for a given matrix invariant is a measure of its complexity. Indeed, to compute the invariant for a given matrix, we reduce it to a certain good form, where computations are easy.

$$\det(A) = \sum_{\sigma \in S_n} (-1)^n a_{1\sigma(1)} \cdots a_{n\sigma(n)}$$

- Computations of det require $\sim O(n^3)$ operations $\operatorname{per}(A) = \sum_{\sigma \in S_n} a_{1\sigma(1)} \cdots a_{n\sigma(n)}$
- Computations of per require
- $\sim (n-1)\cdot (2^n-1)$ multiplicative operations (Raiser formula).

The explanation

There are just few linear preservers of permanent in comparison with the determinant. Indeed,

Theorem (Marcus, May)

Linear transformation T is permanent preserver iff

$$T(A) = P_1 D_1 A D_2 P_2 \quad \forall A \in M_n(\mathbb{F}), \text{ or }$$

$$T(A) = P_1 D_1 A^t D_2 P_2 \quad \forall A \in M_n(\mathbb{F})$$

where D_i are invertible diagonal matrices, $i = 1, 2, \det(D_1D_2) = 1$

 P_i are permutation matrices, i = 1, 2

Group theory

Question Is it possible that two non-isomorphic finite groups have the same group determinant?

Theorem (E. Formanek, D. Sibley)

A group determinant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singularity preserver theorem to the direct products of matrix algebras.

Preserve Problems

$$ho: M_n(R) o S$$
 is a certain matrix invariant $T: M_n(R) o M_n(R)$
$$ho(T(A)) =
ho(A) \quad orall A \in M_n(R)$$

$$T = ?$$

R

Let F be a field

Let I be a field	
$\emptyset \neq S \subseteq M_n(\mathbb{F})$	$T(S) \subseteq S$
$\rho: M_n(\mathbb{F}) \to \mathbb{F} \ \forall A \in M_n(\mathbb{F})$	$\rho(T(A)) = \rho(A)$
$\sim: M_n(\mathbb{F})^2 \to \{0,1\}$	$A \sim B \Rightarrow T(A) \sim T(B)$
	$\forall A, B \in M_n(\mathbb{F})$
P – property in $M_n(\mathbb{F})$	$A \in P \Rightarrow T(A) \in P$

T=?

The standard solution in linear case

There are $P, Q \in GL_n(\mathbb{F})$:

$$T(X) = PXQ \quad \forall X \in M_n(\mathbb{F})$$

or

$$T(X) = PXQ \quad \forall X^t \in M_n(\mathbb{F})$$

Basic methods to investigate PPs

- 1. Matrix theory
- 2. Theory of classical groups
- 3. Projective geometry
- 4. Algebraic geometry
- 5. Differential geometry
- 6. Dualisations
- 7. Tensor calculus
- 8. Functional identities
- 9. Model theory

Maps preserving scrambling index

$\mathsf{Theorem}$

Let $n \geq 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an arbitrary mapping. Then T is a bijective additive operator which preserves non-zero scrambling index

 \exists permutation matrix P such that $T(A) = P^T A P$, $\forall A \in M_n(\mathbf{B})$.

Maps preserving scrambling index

Theorem

Let $n \geq 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an arbitrary mapping. Then T is a bijective additive operator which preserves non-zero scrambling index

 \exists permutation matrix P such that $T(A) = P^T A P$, $\forall A \in M_n(\mathbf{B})$.

For $A \in M_n(\mathbf{B})$ let us use the notation:

$$A_{id} = \sum_{k: A(k,k)=1} E_{kk}; \quad A_{od} = \sum_{i \neq j: A(i,j)=1} E_{ij}.$$

Maps preserving distinct values of the scrambling index

$\mathsf{Theorem}$

Let $n \geqslant 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be an additive bijective map.

• T preserves k = 1 iff \exists permutation matrices P, Q s.t.

$$T(A) = PA Q.$$

• T preserves k = 0 iff \exists a permutation matrix P, s.t.

$$T(A) = P^T A P.$$

• T preserves $k = \max iff \exists permutation matrices P, Q s.t.$

$$T(A) = P^T A_{od} P + Q^T A_{id} Q$$
 for all $A \in M_n(\mathbf{B})$

$$T(A) = P^T A_{od}^T P + Q^T A_{id} Q$$
 for all $A \in M_n(\mathbf{B})$

Maps preserving scrambling index

Theorem

Let $n \geqslant 3$ and $T: M_n(\mathbf{B}) \to M_n(\mathbf{B})$ be the additive map preserves the scrambling index. Then T is a bijection.

Steps of the proof

- 1. Let $A, B \in M_n$. If A is primitive, then A + B is primitive.
- 2. Let $A, B \in M_n$. If $k(A) \neq 0$, then $k(A+B) \neq 0$ and $k(A+B) \leq k(A)$.
- 3. Some notations: $C_n = E_{n,1} + \sum_{i=1}^{n-1} E_{i,i+1}$ is the adjacency matrix of the elementary cycle $(12 \dots n)$. Then $W_n = C_n + E_{n-1,1}$ is the Wielandt matrix.

$$\mathcal{W} = \{A \in M_n(\mathbf{B}) \mid \exists \ P \in \mathcal{P}_n \colon P^T A P = W_n\} - \text{ Wielandt like } \mathcal{C} = \{A \in M_n(\mathbf{B}) \mid \exists \ P \in \mathcal{P}_n \colon P^T A P = C_n\} - \text{ cycles } \mathcal{E} = \{E_{ij} \in M_n(\mathbf{B}) \mid 1 \leqslant i, j \leqslant n\} - \text{ cells } \mathcal{D} = \{E_{ii} \in M_n(\mathbf{B}) \mid 1 \leqslant i \leqslant n\} - \text{ diagonal cells } \mathcal{N} = \mathcal{E} \setminus \mathcal{D} = \{E_{ij} \in \mathcal{E} \mid i \neq j\} - \text{ off-diagonal cells } \mathcal{A}. \text{ By 2. } A \in \mathcal{W} \Rightarrow \mathcal{T}(A) \in \mathcal{W}.$$

Steps of the proof

- 5. T is bijective on W.
- 6. Let $n \geqslant 4$, $E_{ij} \in \mathcal{N}$. Then there exist two distinct matrices $W_1, W_2 \in \mathcal{W}$ such that $W_1 \circ W_2 = E_{ij}$, i.e. W_1 and W_2 have a unique non-zero entry in the position (i,j).
- 7. For any pair E_{ij} , $E_{kl} \in \mathcal{N}$, $E_{ij} \neq E_{kl}$, there exists a matrix $W \in \mathcal{W}$ such that $W \geqslant E_{ij}$, $W \not\geqslant E_{kl}$. 8. Let $A \in M_n$. Then T(A) = O iff A = 0. 9. $T(\mathcal{N}) \subseteq \mathcal{N}$, and moreover, $T(\mathcal{N}) = \mathcal{N}$.
- 10. For any digraph *G* the edge number

$$|E(G)| = |E(G(T(A(G))))|.$$

- 11. G does not have loops iff G(T(A(G))) does not have loops.
- 12. $T(\mathcal{C}) = \mathcal{C}$
- 13. $T(\mathcal{D}) \subseteq \mathcal{D}$, and moreover, $T(\mathcal{D}) = \mathcal{D}$.

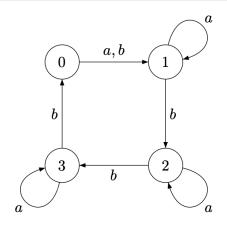
Hence *T* is bijective!

Application to minimal synchronizing automaton

Application to minimal synchronizing automaton

Definition

A word w is called a synchronizing (reset) word of a deterministic finite automaton DFA if w brings all states of the automaton to some specific state.



Conjecture (Černý, 1964)

The shortest synchronizing word for any n-state complete DFA has length $\leq (n-1)^2$.

Theorem (Černý, 1964)

There are DFAs with minimal synchronizing words of length exactly $(n-1)^2$.

Theorem

All known bounds are of order n^3 .

Graphs of large exponent and/or scrambling index lead to examples of slowly synchronizing automata.

Thank you!