Combinatorial indices for matrix semigroups and

finite automata

Alexander E. Guterman

Bar-llan University, Israel

Workshop on Series, Automata, Matrices,
Symbolic dynamics, and their Applications
June 2-6, Warsaw



The talk is based on a series of works with
Yu.A. Alpin,

A.M. Maksaev,

E.R. Shafeev



Positive and Non-negative matrices

Let A € M,(R) be an n x n matrix with the real entries.
A is positive if all its entries are positive, a;; > 0,
A is non-negative, if all a; > 0.

Combinatorial matrix theory is an efficient approach to investigate
non-negative matrices. Here

matrix properties — graph theory constructions
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Directed graph (or digraph) G = (V, E). Loops are permitted
but multiple edges are not. Order of G is the number of
vertices in it.

e u — v walk in a digraph G. The length of a walk is the

. : koo
number of edges in it. The notation v — v is used to
indicate that there is a v — v walk of length k.

A closed walk is a u — v walk where u = v.

A cycle is a closed u — v walk with distinct vertices except for
u=v.

The length of a shortest cycle in G is called the girth of G.



Correspondence between matrices and digraphs

Let A = (ajj) € M,(B). A corresponds to a digraph G = G(A) of
order n as follows. The vertex set is the set V = {1,...,n}. There
is an edge (i, /) from i to j iff a;j # 0. A is adjacency matrix of G.
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Definition
Non-negative A € M,,, A> 0, n> 2, is called decomposable if 3
permutation matrix P € M,, such that

_p(B 0\ pt
A_P<C D)P,

where B, D are square matrices and C is possibly a rectangular
matrix. If A is not decomposable, then it is called indecomposable.

Definition

G is strongly connected iff for any u, v € V(G) there is an oriented
path from u to v.

.




Let Ae M,,, A>0. TFAE
@ A is indecomposable,
e G(A) is strongly connected,
o (I+A)™1>0,
o Vij, i+#j, 3 k:(i,j)-th element of AX is positive.
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Primitive digraphs

Definition

@ A digraph G is primitive if for some positive integer t for all
vertices u, v it is true that u v

o If G is primitive, the exponent of G is the smallest such t.

@ Ac M, A>0,is primitive if 3 k € Zsg: Ak >0.

e If A€ M, is primitive, then the exponent of A is the smallest
such k.

\,

Then AKH1 = Ak A > 0.



Let G be an digraph. THAE
o G is primitive,
e G is strongly connected and the GCD of all cycle lengths in G
is1,
e A(G) is primitive. |

Let G be a primitive digraph. Then exp(G) = exp(A(G)).
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The Wielandt matrix is

0100 0

0 01 0

00 1 0
W, = .

1 000 1

1 000 0

Theorem (Wielandt)

Let A€ M,, A>0. Then exp(A) < exp(W,) = (n—1)? + 1.




Classical example

W, is called a Wielandt digraph. It is the digraph with the maximal
possible exponent, (n —1)% + 1.



Akelbek and Kirkland, 2009

Definition

The scrambling index of a digraph G is the smallest positive integer
k such that for every pair u, v € V(G), exists w € V(G) such that

k k ;
u— wandv — winG.

The scrambling index of G is denoted by k(G). If such w does not
exist, let k(G) = 0.

n_1)2
K(W,) = [(12)“} <(1—12+1=exp(W,)
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Simple structure of digraph
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How to compute the scrambling index?

Simple structure of digraph

(1))
e e What is the value of k(G)?

© ®
@

2 L 1, but 4 2, 1, and there is no other way —
k(G) =0

G
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How to compute the scrambling index?

Simple structure of digraph

@
e e What is the value of k(G)?

O ®

Vae V(G), a 2, 1, but it is impossible to get from 7 to 1 less
than by 3 steps = k(G) =3
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Applications: Markov chains

Let P = (pjj) be a primitive stochastic matrix (thus, p(P) = 1).
The goal is to get some upper bounds for the modulus of the
second largest eigenvalue of P.
Coefficient of ergodicity (Dobrushin or delta coefficient):

n
ax Y _ |pir — pjil
)

1
TPy =3m
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Theorem (Akelbek, Kirkland)

Let P = (pjj) be an n x n primitive stochastic matrix with
k(P) = k and suppose that \ is a non-unit eigenvalue of P. Then
7(P¥) < 1 and |A| < (r(P¥))Y/%.
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Application: Memoryless communication system

@ A memoryless communication system is represented by a
digraph G, |G| = n.

@ Suppose that at time t = 0 each of two different vertices of G
(in general, 2 may be replaced with an arbitrary A € Z,
2 < A< n) 'knows' 1 bit of inf. and these bits are distinct.

@ At time t = 1 each v; having some information in it passes all
the information bits to each of its outputs and simultaneously
it may receive some information. Then V v; forgets the passed
information and has only the received information or nothing.

@ The system continues in this way.

@ For some digraphs after certain time there exists a vertex that
knows both bits of the information, independently on the
choice of the initial two vertices. When and what digraphs?
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Theorem (Lewin)

G is primitive iff G is strongly connected and k(G) # 0.

What is the value of k(G)? G

e G is strongly connected (it has a Hamilton cycle
15234,

@ G is not primitive (it has cycles of lengths only 2 and 4)
— k(G)=0.
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Scrambling index in terms of the matrix theory

Definition (Seneta)

Matrix A € M,(B) is named scrambling matrix if no two rows of it
are orthogonal. Equivalently, if any two rows have at least one
non-zero element in coincident position.

A

Definition (Akelbek, Kirkland)

The scrambling index of a matrix A € M,(B) is the smallest
positive integer k such that A¥ is the scrambling matrix.

€

The scrambling index of A is denoted by k(A). If such k does not
exist, let k(A) = 0.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then k(G) = k(A(G)).
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How to calculate the scrambling index?

What is the value of k(A)?

G(A)
010 1 01 110
A=11 0 1], A2=[11 0], A3=[111
1 00 010 1 01
= k(A) =3

u=2,v=23. Then w = 3 and the shortest paths are
2—+1—-2—3and3—>1—2—3.



Some known bounds for the scrambling index

Theorem (Huang, Liu)

Let G de a primitive digraph of order n > 2 with d loops. Then

or<n-[2].




Denote

> n, when s is odd,

) s, when s is even.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph with n vertices and girth s. Then
k(G) < K(n,s).




Some known bounds for the scrambling index

Theorem (Akelbek, Kirkland)
Let G be a primitive digraph of order n > 3. Then

(n—1)2+1
o< [e=re]

Equality holds iff G = W,,.
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Actually, we do not need to require primitivity...

@ G is not primitive.
@ G is not strongly connected.
o k(G)=3+#0.



Characterization of digraphs with

Theorem (GM, 2019)

For an arbitrary digraph G the following conditions are equivalent:
Q k(G) #0.
@ There exists a primitive subgraph G' of G s.t. V v € V(G) 3
w € V(G’) for which 3 a directed walk from v to w in G.




-partition

Let G be a directed graph. G has a (G — Gp)-partition if Gy and
G, are non-empty subgraphs of the digraph G such that:
1. V(G) = V(G)U V(G),
2. for each directed edge e = (vi,2) € E(G), either e € E(Gy),
ore € E(Gp), orvi € V(G1),v2 € V(Gy).




[[lustration

For a not strongly connected digraph G let us consider a
(G1 — Gp)-partition:

Geometrically this means that V/(G) is partitioned into two
non-intersecting components V/(Gi) and V(Gy) that are connected
only by edges from G to G,.




New upper bounds

Let G is not strongly connected digraph of order n with k(G) # 0
and Gy, G be its (G; — Gp)-partition.

Theorem (GM, 2019)

Let s be a girth of G>. Then

k(G) <1+ K(n—1,s).

Here,

s—1
> n, when s is odd,

n—1 ]
5 s, when s is even.



New upper bounds

Let G is not strongly connected digraph of order n with k(G) # 0
and G, G, be its (Gy — Gp)-partition.

Theorem (GM, 2019)

Assume that |G| = b < n—1. Then

(b—1)2+1".

k(c)gn—b% >




Sharpness of the upper bound

Let n >3, b < n— 1. Define a digraph 7,
n b+1 b 1




Sharpness of the upper bound

Let n >3, b < n— 1. Define a digraph 7,
n b+1 b 1

If b> 1, then k() = n— b+ [%W



New upper bounds

Let G is not strongly connected digraph of order n with k(G) # 0
and Gi, Gy beits (G1—> Gg)—partition.

Theorem (GM, 2019)

Assume that |Gz| = b < n—1. Then

(b—1)2+1]

k(c)gn—bﬁ .

If 4 < n < 2b, then equality holds if and only if G = 7, .




Corollaries

Theorem (GM, 2019)

Let G be an arbitrary digraph of order n > 3. Then

(n—1)2+1]

o< [0

The equality holds if and only if G = W,.

.




Corollaries

Theorem (GM, 2019)

Let G be an arbitrary digraph of order n > 3. Then

K(G) < {(”_12)2“}

The equality holds if and only if G = W,

Theorem (GM, 2019)

Let G be a not strongly connected digraph of order n > 3. Then

k(G)<1+{(”_22)2+1]

When n > 4, the equality holds if and only if G = 7}, 1.




Maps preserving scrambling index

Definition

o We say that T is a map preserving the scrambling index, if for
all A € M,(B) we have that k(T (A)) = k(A).

@ We say that T is a map preserving the non-zero scrambling
index, if for all A € M,(B), for which k(A) # 0, we have that
k(T(A)) = k(A).

o We say that T is a map preserving the scrambling index on

the set of primitive matrices if V primitive A € Mp(B) we have
that k(T (A)) = k(A).

v




Theorem (Frobenius, 1896)
T : Mp(C) — M,(C) — linear, bijective,

det(T(A)) =detA VA€ M,(C)

U
3P, Q € GL,(C), det(PQ) =1
T(A) = PAQ VA € M,(C)

or
T(A) = PAIQ VA € M,(C)




Definition
T : My n(F) — My, n(F) is standard iff
3P € GL,(F), Q € GL,(FF):

T(A) = PAQ VA€ M, »(F)
or m = n and

T(A) = PA'Q VA € M, ,(F)




Let X € My, »(C). Then G, (X) € M( )(" )((C) consists from
r-minors of X ordered lexicographically by rows and columns.

[Schur, 1925] Let T : My, ,C) — My, n(C) be bijective and linear,
r, 2 < r < min{m, n}, be given. 3 bijective linear
S: M(m) (n)(C) — M( )( )((C) S.t.

r)’\r

C(T(X)) = S(C (X)) V € My n(C)

iff T is standard.




Theorem (Dieudonné, 1949)

Qn(F) is the set of singular matrices
T : Mp(F) — M,(F) — linear, bijective, T(2,(FF)) C Qn(F)

4

P, Q € GL,(F)

T(A) = PAQ VA€ M,(F)

or
T(A) = PA'Q VA € M,(F)




E.B. Dynkin, Maximal subgroups of classical groups // The
Proceedings of the Moscow Mathematical Society, 1 (1952) 39-166.

Sto(F) C Fix(S) C GL,2(F)



The quantity of Linear Preservers for a given matrix invariant is a
measure of its complexity. Indeed, to compute the invariant for a
given matrix, we reduce it to a certain good form, where

computations are easy.
det(A) = Z (_1)nala(1) “*dno(n)
o€S,
e Computations of det require ~ O(n®) operations
per (A) = > a15(1) " ano(n)
o€S,
e Computations of per require

~ (n—1)-(2" — 1) multiplicative operations (Raiser formula).



The explanation

There are just few linear preservers of permanent in comparison
with the determinant. Indeed,

Theorem (Marcus, May)

Linear transformation T is permanent preserver iff

T(A) = P1D1AD,P, VA € My(F), or

T(A) = P1D1A'D,Py, VA € M,(TF)

where D; are invertible diagonal matrices, i = 1,2,det(D;1D;) =1
P; are permutation matrices, i = 1,2




e Group theory

Question Is it possible that two non-isomorphic finite groups have
the same group determinant?

Theorem (E. Formanek, D. Sibley)

A group determinant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singularity preserver
theorem to the direct products of matrix algebras.




p: Mp(R) — S is a certain matrix invariant
T : Mp(R) — Mp(R)
p(T(A)) = p(A) VA€ Ma(R)

T ="

PP



Let I be a field

0 #S C Mp(F) T(S)CS
p: My(F) = F VA € M,(F) p(T(A)) = p(A)
~: M,(F)? — {0,1} A~ B = T(A) ~ T(B)
VA, B € M,(F)
P — property in M,(IF) AcP=T(AeP
T =7

The standard solution in linear case
There are P, Q € GL,(F):

T(X) = PXQ VX € My(F)

or
T(X) = PXQ VX' e My(F)
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Basic methods to investigate PPs

. Matrix theory

. Theory of classical groups
. Projective geometry

. Algebraic geometry

. Differential geometry

. Dualisations

. Tensor calculus

. Functional identities

. Model theory



Maps preserving scrambling index

Let n> 3 and T: M,(B) — M,(B) be an arbitrary mapping. Then
T is a bijective additive operator which preserves non-zero
scrambling index

0

3 permutation matrix P such that T(A) = PTAP, VA € M,(B).




Maps preserving scrambling index

Let n> 3 and T: M,(B) — M,(B) be an arbitrary mapping. Then
T is a bijective additive operator which preserves non-zero
scrambling index

0

3 permutation matrix P such that T(A) = PTAP, VA € M,(B).

For A € M,(B) let us use the notation:

Aig = Z Exk;  Aod = Z Eij'

k: A(k,k)=1 i#j: Aij)=1



Maps preserving distinct values of the scrambling index

Let n >3 and T: M,(B) — M,(B) be an additive bijective map.
e T preserves k = 1 iff 3 permutation matrices P, Q s.t.

T(A) = PAQ.

e T preserves k = 0 iff 3 a permutation matrix P, s.t.
T(A) = PTAP.

e T preserves k = max iff 3 permutation matrices P, Q s.t.

T(A)=PTAcg P+ QTAiy Q for all A M,(B)

T(A) = PTAL P+ QTAiy Q for all A€ M,(B)




Maps preserving scrambling index

Let n >3 and T: M,(B) — M,(B) be the additive map preserves
the scrambling index. Then T is a bijection.




Steps of the proof

1. Let A,B € M,,. If Ais primitive, then A + B is primitive.
2. Let A,B € M,. If k(A) # 0, then k(A+ B) # 0 and
k(A+ B) < k(A).
n—1
3. Some notations: C, = E,1 + Z Eji+1 is the adjacency matrix

of the elementary cycle (12...n). Then W, = C, + E,—11 is the
Wielandt matrix.

W={Aec M,B)|3PcP,: PTAP = W,} — Wielandt like
C={Ac M,(B)|3PecP,: PTAP=C,} — cycles

E={Eje MyB)|1<ij<n}— cells

D ={Ei € M,(B)|1< i< n}— diagonal cells

N =E\D={Ejc&|i#j}— off-diagonal cells

4. By2. AcW = T(A) eW.



Steps of the proof

5. T is bijective on W.

6. Let n >4, Ej; € N. Then there exist two distinct matrices
Wi, Wo € W such that Wy o Ws = Ej, i.e. Wi and W5 have a
unique non-zero entry in the position (/,).

7. For any pair Ejj, Eiy € N, Ejj # Ej, there exists a matrix

W € W such that W > Ej;, W % Ey. 8. Let A€ M,. Then
T(A)=0iff A=0.9. T(N) C N, and moreover, T(N) = N.
10. For any digraph G the edge number

E(G)] = |E(G(T(A(G))))).

11. G does not have loops iff G(T(A(G))) does not have loops.
12. T(C)=C

13. T(D) C D, and moreover, T(D) = D.

Hence T is bijective!



Application to minimal synchronizing automaton




Application to minimal synchronizing automaton

Definition

A word w is called a synchronizing (reset) word of a deterministic
finite automaton DFA if w brings all states of the automaton to
some specific state.

abbbabbba



Conjecture (Cerny, 1964)

The shortest synchronizing word for any n-state complete DFA has
length < (n — 1)2.

Theorem (Cerny, 1964)

There are DFAs with minimal synchronizing words of length exactly
(n—1)>2

All known bounds are of order n3.

Graphs of large exponent and/or scrambling index lead to examples
of slowly synchronizing automata.




Thank you!



