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Positive and Non-negative matrices

Let A ∈ Mn(R) be an n × n matrix with the real entries.
A is positive if all its entries are positive, aij > 0,
A is non-negative, if all aij ≥ 0.

Combinatorial matrix theory is an efficient approach to investigate
non-negative matrices. Here

matrix properties −→ graph theory constructions



Graphs

Directed graph (or digraph) G = (V ,E ). Loops are permitted
but multiple edges are not. Order of G is the number of
vertices in it.

u → v walk in a digraph G . The length of a walk is the
number of edges in it. The notation u

k−→ v is used to
indicate that there is a u → v walk of length k .
A closed walk is a u → v walk where u = v .
A cycle is a closed u → v walk with distinct vertices except for
u = v .
The length of a shortest cycle in G is called the girth of G .
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Correspondence between matrices and digraphs

Let A = (aij) ∈ Mn(B). A corresponds to a digraph G = G (A) of
order n as follows. The vertex set is the set V = {1, . . . , n}. There
is an edge (i , j) from i to j iff aij 6= 0. A is adjacency matrix of G .

1 2

34

A =


0 1 1 0
0 0 1 0
0 1 1 1
1 0 0 0

 G (A)←→
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Definition
Non-negative A ∈ Mn, A ≥ 0, n ≥ 2, is called decomposable if ∃
permutation matrix P ∈ Mn such that

A = P

(
B 0
C D

)
Pt ,

where B,D are square matrices and C is possibly a rectangular
matrix. If A is not decomposable, then it is called indecomposable.

Definition
G is strongly connected iff for any u, v ∈ V (G ) there is an oriented
path from u to v .



Theorem
Let A ∈ Mn, A ≥ 0. TFAE

A is indecomposable,
G (A) is strongly connected,
(I + A)n−1 > 0,
∀ i , j , i 6= j , ∃ k : (i , j)-th element of Ak is positive.

Example

1

2

3

A =

0 0 1
1 0 0
0 1 0


(I + A)2 =

(
1 1 1
1 1 1
1 1 1

)
.



Primitive digraphs

Definition
A digraph G is primitive if for some positive integer t for all
vertices u, v it is true that u t−→ v .

If G is primitive, the exponent of G is the smallest such t.

Definition

A ∈ Mn, A ≥ 0, is primitive if ∃ k ∈ Z>0 : Ak > 0.
If A ∈ Mn is primitive, then the exponent of A is the smallest
such k .

Then Ak+1 = Ak · A > 0.
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Theorem
Let G be an digraph. THAE

G is primitive,
G is strongly connected and the GCD of all cycle lengths in G
is 1,
A(G ) is primitive.

Corollary

Let G be a primitive digraph. Then exp(G ) = exp(A(G )).



Example

1

2

3

A =
(

0 0 1
1 0 0
0 1 0

)
is indecomposable and is

not primitive: A2 =
(

0 1 0
0 0 1
1 0 0

)
, A3 = I , A4 = A, etc.

1

2

3

A =
(

1 0 1
1 0 0
0 1 0

)
is primitive: A4 =

(
1 1 1
1 1 1
1 1 1

)



The Wielandt matrix is

Wn =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
...

1 0 0 0 · · · 1
1 0 0 0 · · · 0



Theorem (Wielandt)

Let A ∈ Mn, A ≥ 0. Then exp(A) ≤ exp(Wn) = (n − 1)2 + 1.



Classical example

n − 1

Wnn − 2

n
1

2

3

Wn is called a Wielandt digraph. It is the digraph with the maximal
possible exponent, (n − 1)2 + 1.



Akelbek and Kirkland, 2009

Definition
The scrambling index of a digraph G is the smallest positive integer
k such that for every pair u, v ∈ V (G ), exists w ∈ V (G ) such that
u

k−→ w and v
k−→ w in G .

The scrambling index of G is denoted by k(G ). If such w does not
exist, let k(G ) = 0.

k(Wn) =

⌈
(n − 1)2 + 1

2

⌉
< (n − 1)2 + 1 = exp(Wn)



How to compute the scrambling index?

Simple structure of digraph

1 2

3

4

5

6

7

What is the value of k(G )?
G

2
1−→ 1, but 4

2−→ 1, and there is no other way =⇒
k(G ) = 0
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Applications
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Applications: Markov chains

Let P = (pij) be a primitive stochastic matrix (thus, ρ(P) = 1).

The goal is to get some upper bounds for the modulus of the
second largest eigenvalue of P .
Coefficient of ergodicity (Dobrushin or delta coefficient):

τ(P) =
1

2
max
i ,j

n∑
l=1

|pil − pjl |

Theorem (Akelbek, Kirkland)

Let P = (pij) be an n × n primitive stochastic matrix with
k(P) = k and suppose that λ is a non-unit eigenvalue of P . Then
τ(Pk) < 1 and |λ| ≤ (τ(Pk))1/k .
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Application: Memoryless communication system

A memoryless communication system is represented by a
digraph G , |G | = n.

Suppose that at time t = 0 each of two different vertices of G
(in general, 2 may be replaced with an arbitrary λ ∈ Z,
2 6 λ 6 n) ’knows’ 1 bit of inf. and these bits are distinct.
At time t = 1 each vi having some information in it passes all
the information bits to each of its outputs and simultaneously
it may receive some information. Then ∀ vi forgets the passed
information and has only the received information or nothing.
The system continues in this way.
For some digraphs after certain time there exists a vertex that
knows both bits of the information, independently on the
choice of the initial two vertices. When and what digraphs?
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How to compute the scrambling index?

Theorem (Lewin)

G is primitive iff G is strongly connected and k(G ) 6= 0.

1 2

34

What is the value of k(G )? G

G is strongly connected (it has a Hamilton cycle
1→ 2→ 3→ 4),
G is not primitive (it has cycles of lengths only 2 and 4)

=⇒ k(G ) = 0.
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Scrambling index in terms of the matrix theory

Definition (Seneta)

Matrix A ∈ Mn(B) is named scrambling matrix if no two rows of it
are orthogonal. Equivalently, if any two rows have at least one
non-zero element in coincident position.

Definition (Akelbek, Kirkland)

The scrambling index of a matrix A ∈ Mn(B) is the smallest
positive integer k such that Ak is the scrambling matrix.

The scrambling index of A is denoted by k(A). If such k does not
exist, let k(A) = 0.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph. Then k(G ) = k(A(G )).
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1
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What is the value of k(A)?

G (A)

A =

0 1 0
1 0 1
1 0 0

, A2 =

1 0 1
1 1 0
0 1 0

, A3 =

1 1 0
1 1 1
1 0 1


=⇒ k(A) = 3
u = 2, v = 3. Then w = 3 and the shortest paths are
2→ 1→ 2→ 3 and 3→ 1→ 2→ 3.
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Some known bounds for the scrambling index

Theorem (Huang, Liu)

Let G de a primitive digraph of order n ≥ 2 with d loops. Then

k(G ) ≤ n −
⌈
d

2

⌉
.



Denote

K (n, s) = n − s +



(
s − 1

2

)
n, when s is odd,(

n − 1

2

)
s, when s is even.

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph with n vertices and girth s. Then
k(G ) ≤ K (n, s).



Some known bounds for the scrambling index

Theorem (Akelbek, Kirkland)

Let G be a primitive digraph of order n ≥ 3. Then

k(G ) ≤

⌈
(n − 1)2 + 1

2

⌉
.

Equality holds iff G ∼= Wn.
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G is not primitive.
G is not strongly connected.
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Characterization of digraphs with k(G ) 6= 0

Theorem (GM, 2019)

For an arbitrary digraph G the following conditions are equivalent:
1 k(G ) 6= 0.
2 There exists a primitive subgraph G ′ of G s.t. ∀ v ∈ V (G ) ∃

w ∈ V (G ′) for which ∃ a directed walk from v to w in G .



(G1→G2)-partition

Definition

Let G be a directed graph. G has a (G1→G2)-partition if G1 and
G2 are non-empty subgraphs of the digraph G such that:
1. V (G ) = V (G1) t V (G2);
2. for each directed edge e = (v1, v2) ∈ E (G ), either e ∈ E (G1),

or e ∈ E (G2), or v1 ∈ V (G1), v2 ∈ V (G2).



Illustration

For a not strongly connected digraph G let us consider a
(G1→G2)-partition:

G1 G2

G

Remark
Geometrically this means that V (G ) is partitioned into two
non-intersecting components V (G1) and V (G2) that are connected
only by edges from G1 to G2.



New upper bounds

Let G is not strongly connected digraph of order n with k(G ) 6= 0
and G1, G2 be its (G1→G2)-partition.

Theorem (GM, 2019)

Let s be a girth of G2. Then

k(G ) 6 1 + K (n − 1, s).

Here,

K (n, s) = n − s +



(
s − 1

2

)
n, when s is odd,(

n − 1

2

)
s, when s is even.



New upper bounds

Let G is not strongly connected digraph of order n with k(G ) 6= 0
and G1, G2 be its (G1→G2)-partition.

Theorem (GM, 2019)

Assume that |G2| = b 6 n − 1. Then

k(G ) 6 n − b +

⌈
(b − 1)2 + 1

2

⌉
.



Sharpness of the upper bound

Let n ≥ 3, b ≤ n − 1. Define a digraph Hn,b:

b−1

b−2

b 1

2

3

. . . . . .n−1

n b+1

b+2

. . . . . .

Hn,b

If b > 1, then k(Hn,b) = n − b +
⌈
(b−1)2+1

2

⌉
.
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New upper bounds

Let G is not strongly connected digraph of order n with k(G ) 6= 0
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Theorem (GM, 2019)

Assume that |G2| = b 6 n − 1. Then

k(G ) 6 n − b +

⌈
(b − 1)2 + 1

2

⌉
.

If 4 6 n < 2b, then equality holds if and only if G ∼= Hn,b.



Corollaries

Theorem (GM, 2019)

Let G be an arbitrary digraph of order n > 3. Then

k(G ) 6

⌈
(n − 1)2 + 1

2

⌉
.

The equality holds if and only if G ∼= Wn.

Theorem (GM, 2019)

Let G be a not strongly connected digraph of order n > 3. Then

k(G ) 6 1 +

⌈
(n − 2)2 + 1

2

⌉
.

When n > 4, the equality holds if and only if G ∼= Hn,n−1.
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Maps preserving scrambling index

Definition
We say that T is a map preserving the scrambling index, if for
all A ∈ Mn(B) we have that k(T (A)) = k(A).
We say that T is a map preserving the non-zero scrambling
index, if for all A ∈ Mn(B), for which k(A) 6= 0, we have that
k(T (A)) = k(A).
We say that T is a map preserving the scrambling indeх on
the set of primitive matrices if ∀ primitive A ∈ Mn(B) we have
that k(T (A)) = k(A).



Theorem (Frobenius, 1896)

T : Mn(C)→ Mn(C) — linear, bijective,

det(T (A)) = detA ∀A ∈ Mn(C)

⇓

∃P,Q ∈ GLn(C), det(PQ) = 1 :

T (A) = PAQ ∀A ∈ Mn(C)

or
T (A) = PAtQ ∀A ∈ Mn(C)



Definition
T : Mmn(F)→ Mmn(F) is standard iff
∃P ∈ GLm(F), Q ∈ GLn(F):

T (A) = PAQ ∀A ∈ Mm,n(F)

or m = n and

T (A) = PAtQ ∀A ∈ Mm,n(F)



Let X ∈ Mm,n(C). Then Cr (X ) ∈ M(mr ),(
n
r)

(C) consists from
r -minors of X ordered lexicographically by rows and columns.

Theorem
[Schur, 1925] Let T : MmnC)→ Mmn(C) be bijective and linear,
r , 2 ≤ r ≤ min{m, n}, be given. ∃ bijective linear
S : M(mr ),(

n
r)

(C)→ M(mr ),(
n
r)

(C) s.t.

Cr (T (X )) = S(Cr (X )) ∀ ∈ Mm,n(C)

iff T is standard.



Theorem (Dieudonné, 1949)

Ωn(F) is the set of singular matrices
T : Mn(F)→ Mn(F) — linear, bijective, T (Ωn(F)) ⊆ Ωn(F)

⇓

∃P,Q ∈ GLn(F)

T (A) = PAQ ∀A ∈ Mn(F)

or
T (A) = PAtQ ∀A ∈ Mn(F)



E.B. Dynkin, Maximal subgroups of classical groups // The
Proceedings of the Moscow Mathematical Society, 1 (1952) 39-166.

Stn(F) ⊆ Fix(S) ⊆ GLn2(F)



The quantity of Linear Preservers for a given matrix invariant is a
measure of its complexity. Indeed, to compute the invariant for a
given matrix, we reduce it to a certain good form, where
computations are easy.

det(A) =
∑
σ∈Sn

(−1)na1σ(1) · · · anσ(n)

• Computations of det require ∼ O(n3) operations
per (A) =

∑
σ∈Sn

a1σ(1) · · · anσ(n)

• Computations of per require
∼ (n − 1) · (2n − 1) multiplicative operations (Raiser formula).



The explanation

There are just few linear preservers of permanent in comparison
with the determinant. Indeed,

Theorem (Marcus, May)

Linear transformation T is permanent preserver iff
T (A) = P1D1AD2P2 ∀A ∈ Mn(F), or
T (A) = P1D1A

tD2P2 ∀A ∈ Mn(F)
where Di are invertible diagonal matrices, i = 1, 2, det(D1D2) = 1
Pi are permutation matrices, i = 1, 2



• Group theory

Question Is it possible that two non-isomorphic finite groups have
the same group determinant?

Theorem (E. Formanek, D. Sibley)

A group determinant determines the group up to an automorphism

Proof is based on an extension of Dieudonne singularity preserver
theorem to the direct products of matrix algebras.



Preserve Problems

ρ : Mn(R)→ S is a certain matrix invariant
T : Mn(R)→ Mn(R)

ρ(T (A)) = ρ(A) ∀A ∈ Mn(R)

T =?

PPρ T

R



Let F be a field
∅ 6= S ⊆ Mn(F) T (S) ⊆ S

ρ : Mn(F)→ F ∀A ∈ Mn(F) ρ(T (A)) = ρ(A)

∼: Mn(F)2 → {0, 1} A ∼ B ⇒ T (A) ∼ T (B)
∀A,B ∈ Mn(F)

P – property in Mn(F) A ∈ P ⇒ T (A) ∈ P
T =?

The standard solution in linear case
There are P,Q ∈ GLn(F):

T (X ) = PXQ ∀X ∈ Mn(F)

or
T (X ) = PXQ ∀X t ∈ Mn(F)



Basic methods to investigate PPs
1. Matrix theory
2. Theory of classical groups
3. Projective geometry
4. Algebraic geometry
5. Differential geometry
6. Dualisations
7. Tensor calculus
8. Functional identities
9. Model theory



Maps preserving scrambling index

Theorem
Let n ≥ 3 and T : Mn(B)→ Mn(B) be an arbitrary mapping. Then
T is a bijective additive operator which preserves non-zero
scrambling index

m

∃ permutation matrix P such that T (A) = PTAP, ∀A ∈ Mn(B).

For A ∈ Mn(B) let us use the notation:

Aid =
∑

k : A(k,k)=1

Ekk ; Aod =
∑

i 6=j : A(i ,j)=1

Eij .



Maps preserving scrambling index

Theorem
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scrambling index
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∃ permutation matrix P such that T (A) = PTAP, ∀A ∈ Mn(B).
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Maps preserving distinct values of the scrambling index

Theorem

Let n > 3 and T : Mn(B)→ Mn(B) be an additive bijective map.
• T preserves k = 1 iff ∃ permutation matrices P,Q s.t.

T (A) = PAQ.

• T preserves k = 0 iff ∃ a permutation matrix P , s.t.

T (A) = PTAP.

• T preserves k = max iff ∃ permutation matrices P,Q s.t.

T (A) = PTAod P + QTAid Q for all A ∈ Mn(B)

T (A) = PTAT
od P + QTAid Q for all A ∈ Mn(B)



Maps preserving scrambling index

Theorem
Let n > 3 and T : Mn(B)→ Mn(B) be the additive map preserves
the scrambling index. Then T is a bijection.



Steps of the proof

1. Let A,B ∈ Mn. If A is primitive, then A + B is primitive.
2. Let A,B ∈ Mn. If k(A) 6= 0, then k(A + B) 6= 0 and
k(A + B) 6 k(A).

3. Some notations: Cn = En,1 +
n−1∑
i=1

Ei ,i+1 is the adjacency matrix

of the elementary cycle (12 . . . n). Then Wn = Cn + En−1,1 is the
Wielandt matrix.
W = {A ∈ Mn(B) | ∃ P ∈ Pn : PTAP = Wn} − Wielandt like
C = {A ∈ Mn(B) | ∃ P ∈ Pn : PTAP = Cn} − cycles
E = {Eij ∈ Mn(B) | 1 6 i , j 6 n} − cells
D = {Eii ∈ Mn(B) | 1 6 i 6 n} − diagonal cells
N = E \ D = {Eij ∈ E | i 6= j} − off-diagonal cells
4. By 2. A ∈ W ⇒ T (A) ∈ W.



Steps of the proof

5. T is bijective on W.
6. Let n > 4, Eij ∈ N . Then there exist two distinct matrices
W1,W2 ∈ W such that W1 ◦W2 = Eij , i.e. W1 and W2 have a
unique non-zero entry in the position (i , j).
7. For any pair Eij ,Ekl ∈ N , Eij 6= Ekl , there exists a matrix
W ∈ W such that W > Eij , W � Ekl . 8. Let A ∈ Mn. Then
T (A) = O iff A = 0. 9. T (N ) ⊆ N , and moreover, T (N ) = N .
10. For any digraph G the edge number
|E (G )| = |E (G (T (A(G ))))|.
11. G does not have loops iff G (T (A(G ))) does not have loops.
12. T (C) = C
13. T (D) ⊆ D, and moreover, T (D) = D.
Hence T is bijective!



Application to minimal synchronizing automaton



Application to minimal synchronizing automaton

Definition
A word w is called a synchronizing (reset) word of a deterministic
finite automaton DFA if w brings all states of the automaton to
some specific state.

abbbabbba



Conjecture (Černý, 1964)

The shortest synchronizing word for any n-state complete DFA has
length ≤ (n − 1)2.

Theorem (Černý, 1964)

There are DFAs with minimal synchronizing words of length exactly
(n − 1)2.

Theorem

All known bounds are of order n3.

Graphs of large exponent and/or scrambling index lead to examples
of slowly synchronizing automata.



Thank you!


